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Dedicated to Katherine Johnson, Dorothy Vaughan,  

and Mary Jackson, the hidden figures of Hidden Figures.  

In the ongoing scientific revolution, may the contributions  

of all  people be welcomed, celebrated, and no longer hidden.



From this are & do come admirable adaptations.

— The Emerald Tablet, translated by Isaac Newton
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Preface
Almost Too Much Awesome

I 
love quantum computing so much, I  don’t know where to start. I’m tongue- 

tied. I’m delirious. I  can’t contain my joy. I’m  doing backflips off dump-

sters. I’m riding shopping carts down stairs. I’m swinging by vines over riv-

ers of la va. As in a song lyric I liked in high school, “I’m so bloated up happy 

I could throw  things around me.” (“Heavenly Pop Hit” by The Chills.)

In high school, I had a book called The Secret Guide to Computers. It 

taught BASIC programming. The book opened a misty passageway to a world 

of almost mystical  union with silicon circuitry. It was an initiation to a fel-

lowship of advanced nerds.  Because if  you’re  going to be a nerd, you might as 

well be an advanced one. Well, I’ve got news for you, advanced nerds. It’s time 

to take a quantum leap.

Quantum information science, the broader discipline that contains quan-

tum computing, stands at a  grand conjunction of computer science, digital 

electronics, engineering, quantum mechanics, linear algebra, number theory, 

and even philosophy. It’s a bustling crossroads of all my favorite nerdy pur-

suits. It’s almost too much awesome.

Yes, even philosophy is relevant to quantum information science, as we 

 will see in the chapter about the 2022 Nobel Prize in Physics. As we con-

tinue to expand the frontiers of knowledge, the rigorous mysteries of quan-

tum physics remain stubbornly unsolved. I won der if this is a salutary check 

on  human hubris, a reminder of our place in a world we never made. Physics 

achieves the goal of medieval alchemy and astrology, to illuminate the invis-

ible forces that govern the destinies of all  things. But something always scur-

ries away from the light, and our thirst for complete understanding is forever 

unquenched.

Philosophical questions aside, quantum technology is advancing all the 

time, and the potential uses for quantum computers are exciting and fun to 

explore. Quantum computing is a new and growing field that students hun-

ger to learn about, and instructors who are new to the field are desperate for 
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books they can understand. (I speak from experience as an instructor who is 

new to the field.) I had to carefully study a dozen quantum computing books 

before I understood any of them. New instructors, as well as autodidactic hob-

byists, need a large pool of resources. I hope I’m contributing to this pool.

I’m keeping the math as  simple as I possibly can, and I’m avoiding ma-

trices entirely,  until the completely optional final two chapters. You do need 

to know some precalculus (algebra and occasional trigonometry). On the other 

hand, you  don’t need to know any quantum physics at all. I hope that our 

leap to the farthest Shor, over the howling abyss of quantum phase estima-

tion, is not too daunting. Please  don’t feel bad if you have to skim some sec-

tions, or chew over them slowly like cud. It’s also okay to skip some passages 

out of sheer boredom. Not  every sentence can be a thrill, and the parts you 

skip are always  there if you ever want to go back to them.

So without any further ado, onward to the awesome.
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Chapter 1

Forging the Quantum Key

T
 here are a lot of reasons to keep data secret, accessible only to intended 

viewers. Examples include credit card numbers intended only for a 

seller, medical information intended only for health care providers, 

military intelligence intended only for allies, proprietary industrial pro cesses 

intended only for collaborators, and photos from a meeting of the Nude 

Headstand Enthusiasts Club intended only for fellow club members (you said 

the site was password protected, Steve).

One way to keep data secure is to seal it in a bank vault, or in a safe 

wrapped with padlocked chains buried in a cobra- infested island in a sea 

swarming with sharks. The trou ble with this kind of security is that data often 

needs to be shared. So we need a  convenient way to share data remotely with 

intended recipients, and only with intended recipients.

All electronic data,  whether text, images, videos, or anything  else, is stored 

as combinations of 0’s and 1’s. 0 and 1 represent two dif fer ent voltages in elec-

tronic cir cuits. The two voltages could be 0 volts and 1 volt, but that’s not the 

only choice. The two voltages could be 0 volts and 5 volts; we simply use 1 to 

represent 5 volts. The two voltages could be −4 volts and 3.5 volts; we arbi-

trarily pick one of  these to call 0, and the other to call 1. The point is that we 

can analyze the 0’s and 1’s in data without paying any attention to the physi-

cal details of how  they’re stored.

In fact, 0’s and 1’s can represent more than just voltages. The 0’s and 1’s 

in bar codes and QR codes are black and white stripes or squares. The 0’s and 

1’s in CDs and DVDs are dif fer ent thicknesses of a layer of plastic. As long as 

 there are two, and only two, distinct physical conditions, we have 0’s and 1’s, 

and we can do classical computation.

Our electronic devices know how to convert 0’s and 1’s to videos, im-

ages, sounds, text, and so on. The details of this conversion are not our focus. 

We wish only to securely transmit 0’s and 1’s from a sender to a recipient, 

over a perilous distance fraught with eavesdroppers. In fact, we assume that 

eavesdroppers  will be greedily poring over our data transmissions, combing 

through our 0’s and 1’s for valuable secrets.
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So we have  little choice, then, but to encrypt our data. We transmute our 

sequence of 0’s and 1’s into meaningless gibberish, a cipher, which only the 

intended recipient can decipher.  There are many ways of achieving this. Near 

the end of our journey, we  will meet the RSA cryptosystem, which is vulnera-

ble to the quantum attack of Shor’s algorithm. For now, we  will consider a 

simpler cryptosystem: the private, or secret, key.

It’s  convenient to give names to the sender and receiver of data. The 

traditional names are Alice and Bob. But I think Alice and Bob deserve a 

vacation. So as Alice and Bob  settle into their cozy rooms overlooking waves 

booming against a rocky shore silvered by moonlight, let’s meet our new 

heroes, Odysseus and Penelope. Odysseus is rightly regarded as the most 

cunning of warriors. Less well known is that his wife Penelope is the most 

cunning of quantum engineers.

A 0 or 1 is called a bit. For each bit of the message that Penelope wants 

to send to Odysseus, she needs a secret key bit. The message bit is combined 

with the key bit to form an encrypted bit, according to  these rules:

0 combined with 0 is 0.

0 combined with 1 is 1.

1 combined with 1 is 0.

In other words, if the message bit and the key bit are the same, the en-

crypted bit is 0. If the message bit and the key bit are dif fer ent, the key bit is 

1.  There’s a mathematical symbol, ⊕, called “exclusive OR,” that represents 

 these rules:

0 ⊕ 0 = 0

0 ⊕ 1 = 1 (also, 1 ⊕ 0 = 1)

1 ⊕ 1 = 0

Let’s represent the message bit by M, the key bit by K, and the encrypted bit 

by E. So E = M ⊕ K. Penelope sends encrypted bit E to Odysseus. How can Od-

ysseus recover the message bit M? Odysseus knows the key bit K; this is the se-

cret information known only to Odysseus and Penelope. To recover the message 

bit M, all Odysseus has to do is combine the encrypted bit E with the key bit K 

according to the same rule: E ⊕ K. Since E = M ⊕ K, Odysseus is  really comput-

ing E ⊕ K = M ⊕ K ⊕ K. Now, K is  either 0 or 1. Since 0 ⊕ 0 = 0 and 1 ⊕ 1 = 0,

 K ⊕ K = 0, (1.1)

 whether K is 0 or 1. So Odysseus computes M ⊕ K ⊕ K = M ⊕ 0.  Because M is 

 either 0 or 1, and  because 0 ⊕ 0 = 0 and 1 ⊕ 0 = 1,

 M ⊕ 0 = M. (1.2)

So Odysseus recovers the message bit, but only  because he knows the key bit. 

A potential eavesdropper like Hector  doesn’t know the key bit and cannot 

compute the message bit even if he glimpses the encrypted bit.
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Let’s take an example. Suppose Penelope wants to send Odysseus the 

message 0010. Before Odysseus began his voyage, with masts creaking and 

10- foot waves slapping the hull, he and Penelope agreed to use the secret key 

1011. Penelope combines each bit of the message with the corresponding bit 

of the secret key to obtain the cipher, as shown in  Table 1.1. The first encrypted 

bit is 0 ⊕ 1 = 1, the second is 0 ⊕ 0 = 0, the third is 1 ⊕ 1 = 0, and the fourth is 

0 ⊕ 1 = 1. So the cipher is 1001, which Penelope sends to Odysseus. Hector 

spies on this message but  can’t make heads or tails of it  because he  doesn’t 

know the secret key.

Now, Odysseus receives the cipher 1001, and he combines each of its bits 

with the corresponding bit of the secret key, 1011, as shown in  Table 1.2. The 

first bit becomes 1 ⊕ 1 = 0, the second bit becomes 0 ⊕ 0 = 0, the third bit be-

comes 0 ⊕ 1 = 1, and the fourth bit becomes 1 ⊕ 1 = 0. Thus, Odysseus has 

restored the (lurid and poignant) message, 0010.

So far,  there’s nothing quantum about this. Suppose, however, that Pe-

nelope and Odysseus decide they need to periodically change their secret key 

to keep Hector from guessing it. How can Penelope and Odysseus establish a 

secret key remotely? This is where Penelope’s quantum genius comes in.

Three thousand years ahead of her time, Penelope has perfected a single- 

atom version of an experiment that normally requires a beam of atoms. (The 

real experiment, with a beam of atoms, is called the Stern- Gerlach experiment.) 

Penelope launches silver atoms through a magnetic field and observes that each 

atom is deflected  toward  either the magnet’s north pole or south pole; no atom 

passes straight through. If the magnetic field is vertical, each atom is deflected 

 either UP or DOWN. If the magnetic field is horizontal, each atom is deflected 

 either RIGHT or LEFT.

 Table 1.1

Message Bit Key Bit Encrypted Bit

First Bit 0 1 0 ⊕ 1 = 1

Second Bit 0 0 0 ⊕ 0 = 0

Third Bit 1 1 1 ⊕ 1 = 0

Fourth Bit 0 1 0 ⊕ 1 = 1

 Table 1.2

Encrypted Bit Key Bit Message Bit

First Bit 1 1 1 ⊕ 1 = 0

Second Bit 0 0 0 ⊕ 0 = 0

Third Bit 0 1 0 ⊕ 1 = 1

Fourth Bit 1 1 1 ⊕ 1 = 0



4  Chapter 1

Penelope observes that if an atom is deflected UP and then immediately 

enters another vertical magnetic field, it  will again be deflected UP:

atom → vertical magnetic field → deflected UP 

→ vertical magnetic field → deflected UP

We could send the atom through a hundred vertical magnetic fields in a row, 

and it would get deflected UP  every time. The atom apparently has an endur-

ing property that determines its be hav ior in vertical magnetic fields.

Similarly, an atom deflected DOWN is again deflected DOWN when it 

immediately enters another vertical magnetic field. If an atom is deflected 

RIGHT in a horizontal magnetic field, it is again deflected RIGHT in another 

horizontal magnetic field; the same rule applies to an atom deflected LEFT.

Penelope further observes that if an atom is deflected UP, and then enters 

a horizontal magnetic field, it is equally likely to be deflected RIGHT or LEFT. 

If the atom then enters a vertical magnetic field, it is no longer certain to go 

UP; it is equally likely to go DOWN:

atom → vertical magnetic field → deflected UP → horizontal magnetic field  

→ deflected LEFT or RIGHT → vertical magnetic field  

→ deflected UP or DOWN

The horizontal magnetic field apparently erased the atom’s vertical- field prop-

erty: The atom lost its reliable UP- ness and has become just as likely to deflect 

DOWN.

Similarly, an atom initially deflected DOWN is equally likely to be de-

flected RIGHT or LEFT in a horizontal magnetic field,  after which it is equally 

likely to go UP and DOWN in a vertical magnetic field. An atom initially de-

flected  either RIGHT or LEFT is equally likely to be deflected UP or DOWN 

in a vertical magnetic field,  after which it is equally likely to go  either direc-

tion in a horizontal field, regardless of its initial deflection.

This is 100% of the quantum physics we need to understand quantum 

key distribution. To summarize, a silver atom deflected in a magnetic field  will 

be deflected the same way if it subsequently enters a magnetic field in the same 

direction—if it  hasn’t been in any other magnetic fields. If the atom enters a 

magnetic field perpendicular to the field it initially passed through, it has a 

50% chance of  going  either way, and if it  later enters a magnetic field in the 

same direction as the original field it traversed, it has a 50% chance of  going 

 either way.

In effect, when a silver atom passes through a magnetic field, it is endowed 

with one bit of information about how it behaves in that field: UP or DOWN 

in a vertical field, and RIGHT or LEFT in a horizontal field. But when the 

atom passes through a field perpendicular to the original field, the original in-

formation is erased and replaced with information about how the atom be-

haves in the new field.
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So, Penelope’s plan is this. She  will represent a 0 by a silver atom initially 

deflected  either UP or RIGHT. She  will represent a 1 by a silver atom ini-

tially deflected  either DOWN or LEFT. She launches the selected atom to 

Odysseus, across the azure tides of sea- roiling Poseidon. Odysseus randomly 

sets his magnetic field  either vertical or horizontal, and he observes the deflec-

tion of the atom.

For example, suppose Penelope wants to transmit a 1 by sending Odys-

seus a DOWN atom. Suppose Odysseus chooses to set his magnetic field 

vertical. Then, he  will observe the atom deflected DOWN. He knows that 

Penelope uses DOWN to represent 1, so he guesses that Penelope wanted to 

transmit a 1.

However, if Odysseus instead chooses a horizontal magnetic field for this 

atom, it equally likely deflects RIGHT or LEFT. If it deflects RIGHT, Odys-

seus guesses incorrectly that Penelope wanted to transmit a 0.

Suppose that the choices and results for the first four atoms are as shown 

in  Table 1.3.  After Odysseus  measures all the atoms, he and Penelope reveal 

the directions of their magnetic fields in all cases. They  don’t need to encode 

this announcement; eavesdroppers can do no harm now. Odysseus discards 

his guesses whenever he chose a dif fer ent magnetic field direction than Pe-

nelope. So in the example in  Table 1.3, he discards his guesses for the second 

and fourth atoms. He knows that his guesses for the first and third atoms  were 

correct, so he and Penelope have now established two bits of their secret 

key: 11. They repeat with as many atoms as necessary to generate a suffi-

ciently long key.

Now, how do the laws of quantum physics guarantee that their key is 

secure? In other words, how can they be certain that no eavesdropper copied 

the data as it traveled from Penelope to Odysseus? If Hector tries to intercept 

the silver atom, he has to choose  whether to set his magnetic field horizontal 

or vertical, just as Odysseus does. He observes the atom and passes it on to 

Odysseus, but his attempt at espionage is thwarted by quantum physics. Let’s 

see how.

 Table 1.3

First atom Second atom Third atom Fourth atom

Penelope’s bit 1 1 1 0

Penelope’s magnetic field vertical horizontal horizontal vertical

Penelope’s atom DOWN LEFT LEFT UP

Odysseus’s magnetic field vertical vertical horizontal horizontal

Odysseus’s observation DOWN UP LEFT RIGHT

Odysseus’s guess 1 0 1 0
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Consider this sequence of choices and outcomes:

Penelope’s bit 1

Penelope’s magnetic field vertical

Penelope’s atom DOWN

Hector’s magnetic field horizontal

Hector’s observation RIGHT

Odysseus’s magnetic field vertical

Odysseus’s observation UP

Odysseus’s guess 0

Penelope chooses a vertical magnetic field, and Hector chooses a hori-

zontal magnetic field. The silver atom is equally likely to deflect RIGHT or 

LEFT in Hector’s magnetic field. Odysseus has chosen the same magnetic field 

as Penelope, but the silver atom, having been deflected RIGHT, is equally likely 

to deflect UP and DOWN. If it deflects UP, Odysseus’s guess, 0, differs from 

Penelope’s bit, even though they chose the same magnetic field direction.

To detect Hector’s meddling, Penelope and Odysseus sacrifice some of 

their key bits by revealing them to each other (and unavoidably to any eaves-

dropper monitoring their communication). If their key bits disagree, when they 

chose the same magnetic field direction, they must conclude that an eavesdrop-

per meddled with their attempt to generate a secret key. So they have to aban-

don this attempt at a secret key, and maybe try again  later.

Penelope and Odysseus have to compare a sufficiently large number of 

key bits, perhaps 10, to have a high probability of detecting an eavesdropper. 

This is  because the eavesdropper corrupts only 25% of the key bits. Half of 

the time, the eavesdropper chooses the same magnetic field direction as Pe-

nelope. In this case, the eavesdropper observes the silver atom without chang-

ing it and passes it unaltered on to Odysseus. The other half of the time, the 

eavesdropper chooses a dif fer ent magnetic field direction than Penelope. This 

effectively erases the information about deflection in the direction of Pe-

nelope’s magnetic field. So when Odysseus sets his magnetic field in the same 

direction as Penelope’s, he’s only 50% likely to re- create Penelope’s original 

deflection. In summary: Half of the time, Hector chooses a dif fer ent magnetic 

field direction than Penelope, and when this occurs, the key bit is corrupted 

half of the time. Half of one half is 25%, the rate of key bit corruption.

If Penelope and Odysseus compare a subset of their key bits and find that 

they all agree, they conclude that no eavesdropper was pre sent, and all their 

other key bits remain secret and secure. (They have to discard the bits they 

reveal  because an eavesdropper could be eavesdropping on this communica-

tion, even if no eavesdropper intercepted the silver atoms.) This is a success-

ful instance of quantum key distribution. Quantum key distribution  can’t stop 

eavesdroppers from eavesdropping, but it reveals the presence of an eavesdrop-

per if  there is one.
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Now, let’s rewrite UP, DOWN, RIGHT, and LEFT in the language of 

quantum computing. Let’s use the symbol 0  to represent a silver atom de-

flected UP. This symbol, 0 , is called a ket, which is the second syllable of 

bracket. 0  is often pronounced “ket zero.”  We’ll use 1  to represent an atom 

deflected DOWN. 0  and 1  are two pos si ble states of a quantum bit, or qubit.

Remember that classical bits, 0 and 1, can represent two voltages in a 

cir cuit, or black and white stripes in a bar code, or dif fer ent thicknesses of a 

plastic layer in CDs and DVDs. Similarly, a qubit can be constructed of many 

dif fer ent physical systems. A silver atom is only one possibility, and not a very 

feasible one; not all quantum engineers are as cunning as Penelope. A qubit 

can be made of a photon, such that 0  and 1  represent two dif fer ent polar-

ization directions. In IBM’s quantum pro cessors that  we’ll use throughout this 

book, 0  and 1  represent two dif fer ent states of a superconducting cir cuit. 

In fact, we’d rather not specify how our qubits are constructed: We want to 

establish rules and algorithms that work for any qubits, however they are 

made.

I once asked Matthias Steffen, IBM’s chief quantum architect, how to 

think about the 0  and 1  states of a superconducting cir cuit. He told me 

that he’d given up on visualizing it. So let’s follow the lead of IBM’s chief 

quantum architect. We  will establish rules that allow us to predict the results 

when qubits are  measured. But we  will not stumble far along the rocky path of 

wondering what qubits are  doing when  we’re not  measuring them.

Whereas a classical bit is  either 0 or 1, a qubit can be in some combi-

nation of 0  and 1 , written α 0  + β 1 . α and β are called probability ampli-

tudes, and they are related to the probabilities of dif fer ent  measurements. 

Now,  there are dif fer ent ways of  measuring qubits, analogous to the dif fer ent 

magnetic field directions for the silver atoms. If we do a  measurement that 

results in  either 0  and 1 , this is called a  measurement in the computational 

basis. (The computational basis is sometimes called the z basis by association 

with the vertical, or z, direction.) The probability of  measuring 0  is ||α||2, and 

the probability of  measuring 1  is ||β||2. The total probability of  measuring 

something is 1, which means

 ||α||2 + ||β||2 = 1. (1.3)

This condition is called normalization. If α and β are real numbers, then 

||α||2 = α2 and ||β||2 = β2. However, α and β are allowed to be complex numbers. 

In this case, ||α||2 = αα*, where α* is the complex conjugate of α. We  will work 

exclusively with real numbers for most of our journey.

We assigned UP = 0  and DOWN = 1 . What about RIGHT and LEFT? 

Atoms deflected RIGHT and LEFT are equally likely to subsequently  

deflect UP or DOWN in a vertical magnetic field. This means α2 and β2 

should both be 1/2.  We’ll choose RIGHT =
1

2
0 +

1

2
1 =

1

2
0 + 1( )  
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and LEFT =
1

2
0 − 1

2
1 =

1

2
0 − 1( ). When we write 

1

2
0 − 1( ), 

the probability amplitude of 0  is 
1

2
, and the probability amplitude of 1  

is − 1

2
.

It’s  convenient to define

 + =
1

2
0 + 1( )  (1.4a)

and

 − =
1

2
0 − 1( ).  (1.4b)

In the language of qubits, we can now say that deflection in a horizontal mag-

netic field is a case of a  measurement that yields  either +  or − . This is called 

a  measurement in the x basis by association with the horizontal, or x, 

direction.

We can combine Eqs. (1.4a) and (1.4b) to write 0  and 1  in terms of 

+  and − . The ket symbols can be manipulated exactly like algebraic sym-

bols such as x and y. We can add Eqs. (1.4a) and (1.4b) together, to find 

+ + − =
2

2
0 . Solving for 0 , we obtain

 0 =
1

2
+ + −( ), (1.5a)

using 
2

2
=

2

2

2

2

⎛
⎝⎜

⎞
⎠⎟
=

2

2 2
=

1

2
. Similarly, subtracting Eq. (1.4b) from 

Eq. (1.4a) yields + − − =
2

2
1 . Solving for 1 ,

 1 =
1

2
+ − −( ).  (1.5b)

Whereas Eq. (1.4) gives probability amplitudes of 0  and 1 , Eq. (1.5) 

gives probability amplitudes of +  and − : probability amplitudes for 

 measurements in the x basis. Remembering to square probability amplitudes 

to find probabilities, we see that a qubit in state 0  or 1  is equally likely to 

be found in +  or −  when  measured in the x basis. This is a generalization 

of the fact that a silver atom deflected UP or DOWN is equally likely to de-

flect RIGHT or LEFT when entering a horizontal magnetic field.

When a qubit is  measured, the state becomes  whatever was  measured. 

For example, if a qubit, initially in state 1 , is  measured in the x basis, it is 

equally likely to become +  or − . Effectively, its original state is erased and 

replaced by the new one. This is a generalization of the rule we saw for the 

silver atoms: If an atom is initially deflected UP or DOWN, and then traverses 
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a horizontal magnetic field, it  will deflect RIGHT or LEFT without retaining 

any information about  whether it had been deflected UP or DOWN. This is 

sometimes called the collapse of the state due to  measurement.

Actually, this effect of  measurement is not significant in most of the  later 

chapters.  Measurements  will occur only at the end of our quantum cir cuits. 

And we  will almost always  measure in the computational basis, so the result 

of  measuring a qubit  will be  either 0  or 1 . In fact, the result of the 

 measurement  will be recorded as a classical bit, 0 or 1. All we have to remem-

ber  going forward is that if a qubit in state α 0  + β 1  is  measured, then the 

probability of  measuring 0 is ||α||2, and the probability of  measuring 1 is ||β||2.
To review, let’s repeat our example with Penelope, Hector, and Odysseus, 

but now using ket notation:

Penelope’s bit 1

Penelope’s basis  computational, also called z 

( measurement yields 0  or 1 )

Penelope’s atom 1

Hector’s basis x ( measurement yields +  or − )

Hector’s  measurement +

Odysseus’s basis  computational, also called z 

( measurement yields 0  or 1 )

Odysseus’s  measurement 0

Odysseus’s guess 0

Penelope’s initial state is 1 , which equals 1 =
1

2
+ − −( ), given by 

Eq. (1.5b). Hector  measures this qubit in the x basis, so the result  will be +  

or − . The probability amplitude of +  is 
1

2
, and the probability amplitude 

of −  is − 1

2
. We square  these amplitudes to determine probabilities, and we 

find that the probability of  measuring +  is 1/2, and so is the probability of 

 measuring − . Hector’s  measurement happens to yield + .

Next, Odysseus  measures this qubit in the computational basis, so we 

have to write +  in terms of computational basis states: + =
1

2
0 + 1( ), 

as given in Eq. (1.4a). The probability amplitude is 
1

2
 for both 0  and 1 , 

so 
1

2

⎛
⎝⎜

⎞
⎠⎟

2

=
1

2
 is the probability of obtaining  either result. Odysseus happens 

to find 0 , which is dif fer ent from the state that Penelope sent him. If they 

share  these facts with each other, they  will know that Hector has meddled 

with their qubit.
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Chapter 2

The First Quantum Algorithm
“Collaboration between Parallel Universes”?

C
lassical computers are very good at solving a wide range of prob lems. 

Some prob lems, at least in theory, can be solved more efficiently by 

quantum computers than by classical computers. Deutsch’s algorithm 

was the first quantum algorithm shown to surpass a classical computer in solv-

ing a specific prob lem. The prob lem solved by Deutsch’s algorithm  doesn’t 

have a lot of practical importance, but it’s a warmup to other applications of 

quantum computing.

Deutsch’s algorithm was in ven ted by David Deutsch, who happens to be 

a huge advocate of the many worlds interpretation of quantum mechanics. 

The many worlds interpretation asserts that the universe branches into paral-

lel worlds in which all pos si ble outcomes may occur. Deutsch wrote that quan-

tum computers “ will be the first technology that allows useful tasks to be 

performed in collaboration between parallel universes.” Sadly for Deutsch, al-

most every one who agrees with him lives in other universes. In the main-

stream version of the many worlds interpretation, the dif fer ent universes have 

no influence on one another. (We can but gaze wistfully across the widening 

chasm  toward the universes in which we never made any  mistakes.) Still, 

Deutsch is one of the pioneers of quantum computing, and it’s in ter est ing to 

know what he believes.

Before we develop Deutsch’s algorithm, we need to become familiar with 

a handful of quantum gates. Quantum gates transform qubits, from one state 

to another. (Quantum gates are also called quantum operators. The two terms 

mean exactly the same  thing for our purposes.) Just as  we’re not concerned 

with the physical details of how qubits are made,  we’re not concerned with 

the physical details of how gates are constructed,  either. Let’s start with the 

identity gate, I, which has no effect on any qubit:

 I 0  = 0  (2.1a)
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and

 I 1  = 1 . (2.1b)

Next, we have the quantum NOT gate, called X. The classical NOT op-

eration turns 0 to 1, and 1 to 0. The quantum NOT gate, X, turns 0  to 1 , 

and 1  to 0 :

 X 0  = 1  (2.2a)

and

 X 1  = 0 . (2.2b)

Let’s represent both cases with a single equation. We need a variable to repre-

sent  either 0 or 1, a single bit. This kind of variable is called a Boolean vari-

able. We also need a symbol to represent the classical NOT operation. Let’s 

use a bar over the Boolean value to represent NOT, so 0 = 1 and 1 = 0. Now we 

can combine Eqs. (2.2a) and (2.2b) into

 X j = j ,  (2.2c)

where j is 0 or 1.

What’s the difference between a classical NOT and a quantum NOT? A 

classical NOT acts only on a 0 or 1. On the other hand, a quantum NOT gate 

can act on a generic qubit α 0  + β 1 , which is a combination, called a super-

position, of 0  and 1 .

How do quantum gates act on superpositions? Let’s take an analogy. Sup-

pose I have four nearly identical deer, and seven nearly identical sheep. I want 

to know the approximate total weight of all my animals, but I  can’t fit them 

all on the scale at the same time. (I could if I stacked them, but they  don’t like 

that.) So I simply weigh one deer, and multiply by four, and then weigh one 

sheep, and multiply by seven, and then add it all together. In other words,

WEIGHT(4||DEER〉 + 7||SHEEP〉〉) =  4 × WEIGHT||DEER〉〉  
+ 7 × WEIGHT||SHEEP〉〉.

This is called linearity: I can let WEIGHT act separately on ||DEER〉〉 and 

||SHEEP〉〉, and I can pull the numbers 4 and 7 outside the WEIGHT opera-

tion. Quantum gates obey exactly the same linearity rule, so that

 X(α 0  + β 1 ) = αX 0  + βX 1  = α 1  + β 0 . (2.3)

Our next quantum gate is called Z. It has no effect on 0 , but it multi-

plies 1  by −1:

 Z 0  = 0  (2.4a)

and

 Z 1  = − 1 . (2.4b)
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Can we combine  these into a single equation? Yes. Since (−1)0 = 1 and (−1)1 = −1,

 Z||j〉〉 = (−1)j||j〉〉. (2.4c)

Our final quantum gate for this chapter is the Hadamard gate, H. The 

Hadamard gate turns computational basis states (( 0  and 1 )) into superposi-

tions +  and − :

 H 0 =
1

2
0 + 1( ) = +  (2.5a)

and

 H 1 =
1

2
0 − 1( ) = −  (2.5b)

We can combine  these into a single equation by using the same trick in 

Eq. (2.4c):

 H j =
1

2
0 + (−1)j 1( ). (2.5c)

Let’s show that two H gates applied in a row cancel each other out. In other 

words, H2 = HH = I. (We say that H is its own inverse, written H−1.) We apply 

H to Eq. (2.5c):

H2 j = H H j( ) = H
1

2
0 + ( − 1)j 1( )⎡

⎣⎢
⎤
⎦⎥
.

We then use the linearity rule to bring H inside the parentheses, to act on 0  

and 1 :

H2 j =
1

2
H 0 + (−1)jH 1⎡⎣ ⎤⎦.

Then we use Eqs. (2.5a) and (2.5b) to replace H 0  and H 1 :

H2 j =
1

2

1

2
0 + 1( ) + (− 1)j 1

2
0 − 1( )⎡

⎣⎢
⎤
⎦⎥
.

Collecting probability amplitudes of 0  and 1 , we find

H2 j =
1

2
[1+ ( − 1)j] 0 +

1

2
[1− ( − 1)j] 1 .

We see that when j = 0, the right- hand side becomes 0 , and when j = 1, the 

right- hand side becomes 1 . In other words,

 H2||j〉〉 = ||j〉〉. (2.6)

Since +  = H 0  and −  = H 1  from Eq. (2.5), Eq. (2.6) implies

 H +  = HH 0  = H2 0  = 0  (2.7a)
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and

 H −  = HH 1  = H2 1  = 1 . (2.7b)

A qubit can be acted on by one gate  after another. For example, if 

H acts on 0 , and then Z acts on the result, we get ZH 0 = Z H 0( ) =

Z
1

2
0 + 1( ) =

1

2
0 − 1( ). Notice that the first gate to act in ZH 0  

is  written on the right, closest to the ket. HZ 0  is something dif fer ent: 

HZ 0 = H Z 0( ) = H 0 =
1

2
0 + 1( ). So HZ ≠ ZH. The order of gates 

 matters. This is called noncommutativity, which is a good word to use when 

you want  people to think  you’re smart. On a first date, for instance.

We can practice transforming qubits to our heart’s content. For example, 

HZH 1 = HZ
1

2
0 − 1( ) = H

1

2
0 + 1( ). At this point, we could let H 

act separately on 0  and 1 , according to Eq. (2.5). But it’s simpler to recog-

nize that we now have H + , which lets us use Eq. (2.7a) to arrive at the final 

result of 0 .

Let’s take a moment to define relative phase  factor. The only difference 

between + =
1

2
0 + 1( )  and − =

1

2
0 − 1( )  is a  factor of −1 on 1 . 

In − , the  factor of −1 (on 1  but not on 0 ) is called a relative phase  factor, 

and it distinguishes −  from + . We can perform manipulations to detect 

the difference between +  and − . For example, we can apply the H gate to the 

qubit, which  will convert +  to 0 , and −  to 1 . Then we can  measure in the 

computational basis and obtain  either 0 or 1, indicating that the initial state 

was  either +  or − , respectively.

However, is  there any  measurable difference between + =
1

2
0 + 1( )  

and − + = − 1

2
0 + 1( ) ? In this case, no.  There is no  measurement or ma-

nipulation that can distinguish between +  and − + . The −1  in this case 

(which multiplies the entire expression) is called a global phase  factor, which 

can be simply ignored  because it has no physical meaning. +  and − +  are 

two dif fer ent names for the same state.

Let’s briefly make a futile effort to distinguish between +  and − + . We 

can apply H to the qubit, which converts it to 0  in the first case and to − 0  

in the second. If we then  measure the qubit in the computational basis, we are 

100% likely to obtain 0, in  either case. The minus sign does not affect the 

probability, and no combination of gates  will enable the minus sign to affect 

any probability.

Now,  we’re ready for quantum cir cuit diagrams.  These are exactly equiv-

alent to the equations  we’ve been writing, but diagrams are often easier to 

work with.
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The X gate is represented by  either an X in a box or this symbol:

Quantum cir cuit diagrams are always read from left to right. So if we start 

with 0  on the left of the X gate, we  will have 1  on the right.

This is the Z gate:

Z

And last, this is the H gate:

H

Since we read quantum cir cuit diagrams from left to right, the gate that 

acts first appears on the left. Recall, however, that ZH 0  = Z(H 0 ): The H 

gate, written closest to the ket, acts first. The gate acting last appears on the 

left in an equation, but on the right in a cir cuit diagram. So the cir cuit dia-

gram for ZH 0  exactly reverses the order of the three parts of the expression 

ZH 0 :

H Z

Classical cir cuit diagrams often have loops and branches. In a way, quan-

tum cir cuit diagrams are simpler. You always read from left to right, applying 

the gates in order.

Now  we’re ready to apply our basic rules to Deutsch’s algorithm. 

Deutsch’s algorithm seeks to investigate a function f(x). f(x) is simply a num-

ber that may depend on the value of x. In Deutsch’s algorithm, x is a single 

bit, a Boolean variable,  either 0 or 1. f(x) is also a single bit,  either 0 or 1. For 

example, one pos si ble function is f(x) = x: When x = 0, f(x) = 0, and when 

x = 1, f(x) = 1. This information is restated in  Table  2.1. Another pos si ble 

function is f(x) = x, shown in  Table 2.2.  These two functions are called bal-

anced  because 0 and 1 each appear once in the f(x) column.

 There are two other pos si ble functions f(x).  There is f(x) = 0, shown in 

 Table 2.3. The last pos si ble function is f(x) = 1, shown in  Table 2.4.  These two 
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functions are called constant  because each of  these f(x) functions has a con-

stant value,  independent of x.

Deutsch’s algorithm solves this prob lem: Determine  whether f(x) is con-

stant or balanced. To solve this with a classical computer, we would have to 

input both values of x, one  after the other. Let’s simplify the classical com-

puter to a cir cuit with a single input wire, x, and a single output wire, f(x). To 

determine  whether f(x) is constant or balanced, we have no choice but to apply 

the two pos si ble values of x in sequence.  There are two steps. In the jargon of 

quantum computing, we say that we query the classical cir cuit twice.

Deutsch’s algorithm uses a single query, which is an improvement over 

the two queries in the classical solution. To implement Deutsch’s algorithm, 

we first need a quantum gate that incorporates the function f(x). A quantum 

gate is not the same  thing as a function. A function inputs a number x, and 

outputs another number (or possibly the same number), f(x). A quantum gate 

inputs a qubit in one state, and outputs a qubit in another state (or possibly 

the same state).

A quantum gate that incorporates a function is called a quantum oracle. 

In my thol ogy, an oracle is someone who  will answer a question, but in a con-

 Table 2.1

value of x value of f(x) = x

0 0

1 1

 Table 2.2

value of x value of f x( ) = x

0 1

1 0

 Table 2.3

value of x value of f(x) = 0

0 0

1 0

 Table 2.4

value of x value of f(x) = 1

0 1

1 1
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fusing and cryptic way. You have to be careful when you try to interpret what 

the oracle tells you. A quantum oracle is similar. It answers a question, but in 

a cryptic way. If you thought the Delphic oracle was cryptic, wait  until you 

meet the quantum oracle.

Traditionally, the quantum oracle used in Deutsch’s algorithm acts on two 

qubits. But,  there’s a simpler oracle, called a phase oracle, that works exactly 

as well as the traditional oracle. The phase oracle, Uf, is defined by its action 

on a computational basis state ||x〉〉, where x is 0 or 1:

 Uf||x〉〉 = (−1)f(x)||x〉〉. (2.8)

The only  thing that the phase oracle does is multiply ||x〉〉 by  either −1 or +1, 

depending on the value of f(x).

 We’re ready to construct Uf out of gates  we’ve already seen, for each of 

the four functions f(x).

• If f(x) = 0, Eq. (2.8) becomes Uf||x〉〉 = ||x〉〉: Uf  doesn’t do anything, so it’s 

the identity gate I, or simply no gate at all.

• If f(x) = 1, Eq. (2.8) becomes Uf||x〉〉=−||x〉〉: Uf multiplies any qubit by 

−1. This is a global phase  factor, which can be ignored. So Uf again is 

I, or no gate at all.

• If f(x) = x, Eq. (2.8) becomes Uf||x〉〉 = (−1)x||x〉〉. This is exactly Eq. (2.4c), 

replacing j with x. So Uf = Z. Let’s see what Uf does to a general super-

position of basis states, α 0  + β 1 : Uf(α 0  + β 1 ) = Z(α 0  + β 1 ) =  

αZ 0  + βZ 1  using the linearity rule. Applying Eq. (2.4), we arrive 

fi nally at α 0  − β 1 . We see that Z creates a relative phase  factor, 

which we cannot ignore.

• If f(x) = x, Eq. (2.8) becomes U f x = (−1)x x . Let’s see what this 

does to a generic qubit, α 0  + β 1 : Uf(α 0  + β 1 ) = αUf 0  + βUf 1 , 

using the linearity rule. Then using U f x = (−1)x x  on each term, we 

obtain α(−1)1 0  + β(−1)0 1  = −α 0  + β 1 , This is exactly −1 times 

what we found  earlier for Uf = Z. So Uf = −Z for f(x) = x, but we can 

drop the global phase  factor of −1 and simply use Z.

In summary,  we’ve found that Uf = I for constant functions, and Uf = Z for 

balanced functions.

Deutsch’s algorithm is simply this: HUfH 0 , and then we  measure the 

final result in the computational basis. For constant functions, Uf = I, the two 

H gates cancel each other out, and our final result is 0 .

For balanced functions, Uf = Z, and we have just a  little more work to do. 

HZH 0  = HZ +  = H −   because Z + = Z
1

2
0 + 1( ) =

1

2
Z 0 + Z 1( ) 

=
1

2
0 − 1( ) = − . The last step is that H acting on −  yields 1 , from 

Eq. (2.7b).

So that’s it. We get 0 if the function is constant, and 1 if the function is 

balanced. The lingering question is this: How do you construct Uf if you  don’t 
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already know what f(x) is? And if you do already know what f(x) is, then you 

know if it’s constant or balanced, so  there’s no need to use Deutsch’s algo-

rithm. Well, that’s all true. To come up with a practical application of Deutsch’s 

algorithm, we need an unlikely scenario. Maybe we already constructed our 

Uf gates, but forgot to label them, so we have to use Deutsch’s algorithm to 

determine which oracles are which.

Let’s see how Deutsch’s algorithm works on real IBM quantum pro-

cessors, which are accessible remotely online for  free. Figure 2.1 shows the 

cir cuit for a constant function. In Fig. 2.1, q[0] is an arbitrary label for the 

qubit, and c1 is an arbitrary label for the classical bit obtained when the qubit 

is  measured in the computational basis. The symbol on the right indicates a 

 measurement. The 0 on the arrow is an additional label on the classical bit. 

You can construct the cir cuit yourself at quantum . ibm . com .  Simply choose the 

Quantum Composer (currently found in the “Learning app”) and grab the 

gates from the graphical menu.

I ran the cir cuit 1024 times on a 5- qubit pro cessor called ibmq_quito. 

The results are shown in Fig. 2.2. Only one qubit is  measured, yielding a 

 measurement of  either 0 or 1. Nearly 100% of the time, I got the expected 

result, 0. Due to error, the result of 1 did occur, but only 11 times out of 1024. 

(This error does not occur in a simulation but is a consequence of the non-

ideal be hav ior of the real quantum pro cessor that I accessed. Deutsch’s algo-

rithm is theoretically expected to give the correct result 100% of the time. We 

q[0]

c1

H I H

0

Figure 2.1. Deutsch’s algorithm with a phase oracle for a constant function, 

created using IBM Quantum.

0 1

1,000

800

600

400

200

0

F
re

qu
en

cy

Measurement outcome

Figure 2.2. Results from the cir cuit in Fig. 2.1, created using IBM Quantum.
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 will see  later that some quantum algorithms are expected to give the correct 

result less than 100% of the time, even in theory and simulations. In any case, 

the correct result is expected to be the most likely outcome.)

Next, Fig. 2.3 shows the cir cuit for the balanced function. And the re-

sults are in Fig. 2.4. Most of the time, the result was 1, as expected. The error 

rate this time was a  little higher, 75 out of 1024.

q[0]

c1

H Z H

0

Figure 2.3. Deutsch’s algorithm with a phase oracle for a balanced function, 

created using IBM Quantum.
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Figure 2.4. Results from the cir cuit in Fig. 2.3, created using IBM Quantum.
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Chapter 3

Qubit? Cube It

O
ne qubit at a time is all we need for quantum key distribution and 

Deutsch’s algorithm. However, to accomplish most tasks, we usually 

require two or more qubits. If we have two qubits, both in state 0 , 

we represent the state of the two qubits simply as 0 0 .  Later, it  will be 

 convenient to shorten this to ||00〉〉. For now, we  will stick with 0 0 .

When we  measure two qubits in the computational basis, we obtain 0  

or 1  for each of them. So  there are a total of four pos si ble results: 0 0 , 0 1 , 

1 0 , and 1 1 .  These are the four computational basis states for a system 

of two qubits. The general state of two qubits is a superposition of  these four 

basis states: α 0 0  + β 0 1  + γ 1 0  + δ 1 1 . If we  measure the two qubits in 

the computational basis, the probability of  measuring 0 0  is ||α||2, the prob-

ability of  measuring 0 1  is ||β||2, the probability of  measuring 1 0  is ||γ||2, and 

the probability of  measuring 1 1  is ||δ||2. The sum of the four probabilities 

must be 1, so ||α||2 + ||β||2 + ||γ||2 + ||δ||2 = 1.

Notice that 0 1  is not the same as 1 0 .  There are two qubits, and the 

one represented by the ket on the left is dif fer ent from the one represented by 

the ket on the right.

Suppose we have two qubits, one in state A 0  + B 1 , and the other in state 

C 0  + D 1 . How do we write the state of the two- qubit system? We simply 

multiply together the two single- qubit states: (A 0  + B 1 )(C 0  + D 1 ). This is 

a called a product state  because it is the product of two single- qubit states. 

How do we write this product state in terms of the four computational basis 

states ( 0 0 , 0 1 , 1 0 , and 1 1 )? We follow the normal rules of multipli-

cation, except that we have to distinguish 0 1  from 1 0 . (AC, on the other 

hand, is the same as CA. C and A represent numbers, and the order of multi-

plication  doesn’t  matter when numbers are multiplied. The order does  matter 

when we multiply kets or gates.)

We recall the FOIL (First, Outside, Inside, Last) rule, which means, for 

example, that (x + y)(w + z) = xw + xz + yw + yz; each term in the first pair of 

parentheses multiplies each term in the second pair of parentheses. Similarly,
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 (A 0  + B 1 )(C 0  + D 1 ) = AC 0 0  + AD 0 1  + BC 1 0  + BD 1 1 . (3.1)

For example, suppose we start with two qubits in the state 0 0 . Then, 

we apply the H gate to each qubit: H 0 H 0 =
1

2
0 + 1( )

1

2
0 + 1( ) = 

1

2
0 0 + 0 1 + 1 0 + 1 1( ). The  factors of 

1

2
 are just numbers and can 

be multiplied together.

If  we’re given an expression like 
1

2
0 0 − 0 1 + 1 0 − 1 1( ), with a 

 little work we can  factor it into 
1

2
0 + 1( )

1

2
0 − 1( ). What happens if 

just one qubit in a product state is  measured? The  measurement of one 

qubit does not affect the other. If our two qubits are in the state 

1

2
0 + 1( )

1

2
0 − 1( ), and we  measure the qubit on the left and find it in 

state 0 , the two qubit state becomes 0
1

2
0 − 1( ) =

1

2
0 0 − 0 1( ).

However,  there are some two- qubit states that cannot be factored into a 

product state. For example, consider the state 
1

2
0 0 + 1 1( ). This is a 

superposition of two computational basis states. Each computational basis 

state, in isolation, is a product state. But the superposition 
1

2
0 0 + 1 1( ) 

cannot be factored into a product state (A 0  + B 1 )(C 0  + D 1 ), for any values 

of A, B, C, and D. A state that cannot be factored is called an entangled state.

Quantum entanglement has that straightforward mathematical defini-

tion. However, the physical meaning is complex, unresolved, and even contro-

versial. Consider the entangled state 
1

2
0 0 + 1 1( ). If the qubit on the left 

is  measured, and the result is 0 , the state of both qubits collapses to 0 0 . 

Apparently, the  measurement of one qubit affects both. Or does it?  Were both 

qubits in state 0  all along, only we  didn’t know it for sure?  These questions 

have haunted physicists like a half- dead cat.  We’ll revisit  these questions in 

 later chapters.

As difficult as entanglement is to explain, it’s easy to create with quantum 

gates. Besides the Hadamard gate, we need just one new gate: the controlled 

NOT, or CNOT. CNOT acts on two qubits, one of which is the control, and 

one of which is the target. If the control is 1 , then a NOT, or X, is applied to 

the target. If the control is 0 , nothing happens.

If we write the control first,

 CNOT 0 0  = 0 0 , (3.2a)

 CNOT 0 1  = 0 1 , (3.2b)

 CNOT 1 0  = 1 1 , (3.2c)
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and

 CNOT 1 1  = 1 0 . (3.2d)

In Eqs. (3.2a) and (3.2b), the control is 0 , and the CNOT gate has no effect. 

In Eqs. (3.2c) and (3.2d), the control is 1 , and a NOT is applied to the tar-

get. In Eq. (3.2), we see that the control (the left qubit) is the same on both 

sides of the equations: the control never changes. So if the control is initially 

||control〉〉, the control remains ||control〉〉  after the CNOT operation.

In Eqs. (3.2a) and (3.2d), the target is initially in the same state as the 

control, and the target ends up as 0 . In Eqs. (3.2b) and (3.2c), the target and 

control start in dif fer ent states, and the target ends up as 1 . We recall that 

the exclusive OR operation produces an output of 1 when its two input bits 

differ. So if the control is initially ||control〉〉, and the target is initially ||target〉〉, 
the target becomes ||control ⊕ target〉〉. So all four cases of Eq. (3.2) can all be 

represented by

 CNOT||control〉〉||target〉〉 = ||control〉〉||control ⊕ target〉〉. (3.2e)

Like all quantum gates, the CNOT gate can be applied to superpositions. 

So, for example, CNOT(α 0 0  + β 1 1 ) = αCNOT 0 0  + βCNOT 1 1  =  

α 0 0  + β 1 0 .

In quantum cir cuit diagrams, each horizontal line represents one qubit. 

If the control is the bottom qubit, and the target is the top qubit, the CNOT 

gate looks like this:

If the control is the top qubit, and the target is the bottom qubit, the CNOT 

gate looks like this:

In  either case, the control is represented by a dot, and the target looks like 

crosshairs, which is the symbol for the X, or NOT, gate.

Now, we have a decision to make: If we want to represent 0 1  with a 

cir cuit diagram, is 0  the top qubit or the bottom qubit? Dif fer ent authors 

choose differently. I  will follow IBM Quantum and write the bottom qubit on 
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the left: 0 1  means that the bottom qubit is 0 , and the top qubit is 1 . In 

other words, we  will read our cir cuit diagrams from the bottom up. It’s like 

entering a building: Typically, we enter at the ground floor, and then we go 

up.  We’re not descending into a dungeon;  we’re climbing up a building, or 

climbing up a mountain.

 We’re ready to analyze quantum cir cuits with two or more qubits. Con-

sider Fig. 3.1. The initial state is 0 0 . The H gate transforms the bottom 

qubit from 0  to 
1

2
0 + 1( ). Writing the bottom qubit first (on the left), the 

state of the two qubits is now 
1

2
0 + 1( ) 0 . Before applying the CNOT, 

it’s  convenient to multiply each term in parentheses by the 0  on the right: 

1

2
0 0 + 1 0( ). Next, the CNOT acts in de pen dently on each of the two 

terms, 0 0  and 1 0 . Using Eq. (3.2a), we see that CNOT has no effect on 

0 0   because the control is 0 . Using Eq. (3.2c), we see that CNOT trans-

forms 1 0   because to 1 1   because the control is 1 . So the final state of the 

cir cuit is 
1

2
0 0 + 1 1( ) : an entangled state.

Equation (3.2) applies when the control is written first (on the left), 

which, according to our convention, means that the control is on the bot-

tom in the cir cuit diagram.  We’re just as likely to encounter CNOT gates 

with the control on the top, as shown in Fig. 3.2. In this case, rather than 

using Eq. (3.2), we can just use the rule: When the control is 1 , apply NOT 

to the target.

 Going through Fig. 3.2 gate by gate, the H gate comes first.  After the H 

gate, the state of the qubits is 0
1

2
0 + 1( ) =

1

2
0 0 + 0 1( ). Next, 

the CNOT acts on each of the two terms in parentheses. In the first term, the 

control is 0 , so the CNOT has no effect on the first term. In the second term, 

0 1 , the control is 1   because the top qubit is written last (on the right), and 

the top qubit is the control. So the CNOT transforms 0 1  into 1 1 , and the 

final state of the qubits is again 
1

2
0 0 + 1 1( ).

The analy sis of all quantum cir cuits follows  these same steps: Read the 

cir cuit diagram from left to right, applying one gate at a time,  until you ob-

tain the final state at the end of the cir cuit.

Let’s look again at the four computational basis states for two qubits:

0 0

0 1

1 0

1 1
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It’s often  convenient to write the two numbers inside a single ket:

0 0  = ||00〉〉

0 1  = ||01〉〉

1 0  = ||10〉〉

1 1  = ||11〉〉

Now that we know how to work with two qubits, we can generalize 

Deutsch’s algorithm to multiple qubits. This generalization is called the 

Deutsch- Jozsa algorithm. Our function f(x) still equals 0 or 1, depending on x. 

But now, x can be two or more bits. For example, if x is two bits,  there are four 

pos si ble values of x: 00, 01, 10, and 11. If f(x) = 0 for all four values of x, f(x) is 

constant. If f(x) = 1 for all four values of x, again f(x) is constant. If f(x) = 0 for 

exactly two values of x, and f(x) = 1 for the other two values of x, then we say 

that f(x) is balanced.  Table 3.1 gives an example of a balanced function.

It’s pos si ble for f(x) to be neither constant nor balanced: For example, 

f(x) could be 0 for three values of x and 1 for the other value of x. In the 

Deutsch- Jozsa algorithm, we know that f(x) is  either constant or balanced, 

and we want to know which.

Figure 3.1. A cir cuit to produce an entangled state, created using IBM Quantum.

Figure 3.2. A cir cuit that produces the same entangled state as the one in 

Fig. 3.1, created using IBM Quantum.

 Table 3.1

value of x value of f(x)

00 0

01 1

10 1

11 0
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Just as in the original Deutsch algorithm, we incorporate f(x) into the 

quantum phase oracle Uf defined in Eq. (2.8), Uf||x〉〉 = (−1)f(x)||x〉〉. The only 

difference is that now, x consists of two or more bits, as in  Table 3.1. So, Uf 

acts on two or more qubits. We  will see specific examples of Uf  later.

The Deutsch- Jozsa algorithm, using the oracle defined  earlier, is as follows:

1. Apply H to all qubits (initially in state 0 ).

2. Apply Uf, which acts on all qubits.

3. Apply H to all qubits.

4.  Measure all qubits.

We  will now show that if the  measurement yields 0  for  every qubit, the func-

tion is constant. Other wise, it is balanced. For simplicity, we  will show this for 

the specific case of two qubits; the result is true for any number of qubits.

In the first step, we apply H to both qubits initially in state 0 : H 0 H 0 =

1

2
0 + 1( )

1

2
0 + 1( ) =

1

2
0 0 + 0 1 + 1 0 + 1 1( ).  Let’s combine 

each pair of kets into a single ket: 
1

2
00 + 01 + 10 + 11( ).

In the second step, Uf acts on the qubits. It acts separately on each of the 

four terms. So, for example Uf||00〉〉 = (−1)f(00)||00〉〉.  After Uf acts on all four terms, 

the total state is 
1

2
(−1)f(00) 00 + (−1)f(01) 01 + (−1)f(10) 10 + (−1)f(11) 11( ).

Before we again apply H to both qubits, let’s separately consider constant 

and balanced functions. If f(x) is constant, then f(00) = f(01) = f(10) = f(11) = f(x),  

and our expression is 
1

2
(−1)f(x) 00 + (−1)f(x) 01 + (−1)f(x) 10 + (−1)f(x) 11( ).  

All four terms contain (−1)f(x), so we can  factor it out: (−1)f(x) 1

2
00 + 01(

+ 10 + 11 ). (−1)f(x) is now a global phase  factor, which we can ignore. So 

our state is effectively 
1

2
00 + 01 + 10 + 11( ), which is what is was before 

we applied Uf. We know that this state can be written H 0 ||H 0 . Next, in 

the third step, we apply H to each qubit: H2 0 H2 0  = 0 0   because H2 = I; 

H cancels itself out. So when we  measure the qubits,  we’re guaranteed to 

obtain 0 0  when the function is constant. But are we guaranteed to ob-

tain something dif fer ent when the function is balanced?

So let’s consider the case of balanced f(x). Just  after applying Uf, the state 

is 
1

2
(−1)f(00) 0 0 + (−1)f(01) 0 1 + (−1)f(10) 1 0 + (−1)f(11) 1 1( ).  The next 

step is to again apply H to both qubits. H acts on each qubit in each term, 

so the state is 
1

2
(−1)f(00)H 0 H 0 + (−1)f(01)H 0 H 1 + (−1)f(10)H 1 H 0(  

+ (−1)f(11)H 1 H 1 ). Using the definition of H, we can show that
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H 0 H 0 =
1

2
( 0 0 + 0 1 + 1 0 + 1 1 )

H 0 H 1 =
1

2
( 0 0 − 0 1 + 1 0 − 1 1 )

H 1 H 0 =
1

2
( 0 0 + 0 1 − 1 0 − 1 1 )

H 1 H 1 =
1

2
( 0 0 − 0 1 − 1 0 + 1 1 )

We could plug all of  these expressions into 
1

2
(−1)f 00( )H 0〉H 0〉 + −(   

〉 〉 + (−1)f 01( )H 0〉H 1〉 + (−1)f 10( )H 1〉H 0〉 + (−1)f 11( )H 1〉H 1〉). But that’s no fun. All we 

want to show now is that the probability of  measuring 0 0  is 0. So we only 

have to pay attention to the 0 0  terms. In all four cases, 0 0  is multiplied by 1/2:

H 0 H 0 =
1

2
0 0 + other terms

H 0 H 1 =
1

2
0 0 + other terms

H 1 H 0 =
1

2
0 0 + other terms

H 1 H 1〉 = 1

2
0 0 + other terms

When we plug  these into 
1

2
(−1)f 00( )H 0 H 0 + (−1)f 01( )H 0 H 1 +(  

(−1)f 10( )H 1 H 0 + (−1)f 11( )H 1 H 1 ), we get 
1

2
(−1)f 00( ) 1

2
0 0 +

⎛
⎝⎜  

(−1)f 01( ) 1

2
0 0 + (−1)f 10( ) 1

2
0 0 + (−1)f 11( ) 1

2
0 0

⎞
⎠⎟  + other terms. Factoring 

out 
1

2
0 0 , the expression becomes 

1

4
0 0 (−1)f 00( ) + (−1)f 01( ) + (−1)f 10( ) +(

(−1)f 11( ) ) + other terms.

So if (−1)f 00( ) + (−1)f 01( ) + (−1)f 10( ) + (−1)f 11( )( ) = 0, the probability of 

 measuring 0 0  is 0 for a balanced function. And indeed, for a balanced 

function, exactly two of the exponents are 0, and two of the exponents are 1. 

So we get (−1)0 = 1 twice, and (−1)1 = −1 twice. When we add  these four num-

bers together, we get 1 + 1 + (−1) + (−1) = 0.

Now,  we’re ready to test the Deutsch- Jozsa algorithm on a real quantum 

pro cessor. We saw that when f(x) is constant, Uf is effectively the identity op-

erator, and the Deutsch- Jozsa cir cuit for two qubits is therefore the cir cuit in 

Fig. 3.3.
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 Running the cir cuit on ibm_oslo, I obtained Fig. 3.4. Since the function 

is constant, the result ideally is 0  every time. Due to error, other results occur 

2% of the time. As in the previous chapter, this error does not occur in theory 

or simulations. The error we see  here is due only to nonideal  performance of 

the available technology; it messes up some of the time.

Next, when f(x) is balanced, we have several choices. We might choose 

the balanced function in  Table 3.2, where f(x) equals the second bit in x (the 

bit on the right, so for example, 1 in 01). If we write the two bits of x as x1x0, 

we see that f(x) = x0 in  Table  3.2. Since Uf||x〉〉 = (−1)f(x)||x〉〉, the necessary Uf 

multiplies the state by −1 whenever x0 = 1. Since Z 0  = 0  and Z 1  = − 1 , Uf 

is a Z gate acting on ||x0〉〉, the top qubit, as shown in Fig. 3.5 (where ||x0〉〉 is 
labeled q[0], the default label for the top qubit in IBM Quantum). The results 

from ibm_oslo are in Fig. 3.6. Since the function is balanced, 00 = 0 should 

never be  measured. Due to error, 0 is  measured 1% of the time.

What if we have the balanced function in  Table 3.1? This function f(x) is 

1 whenever x1 is dif fer ent from x0. So Uf needs to multiply by −1 whenever x1 

is dif fer ent from x0. Suppose we multiply by (−1)x0 + x1. When x0 is dif fer ent 

from x1, one of  these bits is 0 and the other is 1, so x0 + x1 = 1, and 

(−1)x0 + x1 = −1. And when x0 = x1, x0 + x1 is  either 0 or 2, which means 

(−1)x0 + x1 = +1. So multiplying by (−1)x0 + x1 does exactly what we need: It mul-
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Figure 3.4. Results from the cir cuit in Fig. 3.3, created using IBM Quantum.
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Figure 3.3. The Deutsch- Jozsa algorithm for a constant function, created 

using IBM Quantum.
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tiplies by −1 when the two bits of x are dif fer ent, and it has no effect when 

the two bits of x are the same. Multiplying by (−1)x0 + x1 is the same as multi-

plying by both (−1)x0 and (−1)x1 , which we achieve with a Z gate on each 

qubit, shown in Fig. 3.7. Figure 3.8 shows the results from ibm_oslo. Again, 

since the function is balanced, 00 = 0 should never be  measured. The histo-

gram in Fig. 3.8 appears ideal, but actually, 0 was  measured once out of 1024 

runs.

As a final example of the Deutsch- Jozsa algorithm, let’s take the balanced 

function of three bits in  Table 3.3.  There are now eight pos si ble values of x. 

In this example, f(x) = 1 whenever exactly one of the bits is 1 (001, 010, and 

 Table 3.2

value of x value of f(x)

00 0

01 1

10 0

11 1
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Figure 3.6. Results from the cir cuit in Fig. 3.5, created using IBM Quantum.
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Figure 3.5. The Deutsch- Jozsa algorithm for the function f(x) = x0, created 

using IBM Quantum.
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100) or all three bits are 1 (111). How do we construct Uf, which multiplies 

by −1 whenever  either one qubit is 1 , or all three are 1 ? If the three bits are 

x2x1x0, we get the desired result if we multiply by (−1)x0 + x1 + x2 , which is 

achieved by a Z gate on all three qubits (Fig. 3.9).

00 111001

1,000

800

600

400

200

0

F
re

qu
en

cy

Measurement outcome

Figure 3.8. Results from the cir cuit in Fig. 3.7, created using IBM Quantum.
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Figure 3.7. The Deutsch- Jozsa algorithm for the function f(x) = 1 if and only 

if the two bits of x differ, created using IBM Quantum.

 Table 3.3

value of x value of f(x)

000 0

001 1

010 1

011 0

100 1

101 0

110 0

111 1
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Let’s see how the cir cuit fares on ibm_oslo (Fig. 3.10). Since the function 

is balanced, 000 = 0 should never be  measured. Indeed, it is not.

111110101011010

1,000

800

600

400

200

0

F
re

qu
en

cy

Measurement outcome

Figure 3.10. Results from the cir cuit in Fig. 3.9, created using IBM Quantum.
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Figure 3.9. The Deutsch- Jozsa algorithm for a balanced function of three 

bits, created using IBM Quantum.
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Chapter 4

Quantum Teleportation
Too Awesome to Require a Pun

T
he last  couple chapters  were a bit dry, so let’s splash into the Aegean 

Sea, which separates our lovelorn heroes, Penelope and Odysseus. Pe-

nelope has a qubit in a special state, α 0  + β 1 , which she wishes to 

send to Odysseus as a token of her love. This qubit is so special that Penelope 

 doesn’t want to send it off to face the sirens, the sorceresses, Scylla and Cha-

rybdis, and a hundred other perils haunting the route  toward Odysseus. So 

Penelope devises a means to teleport the qubit directly to Odysseus.

In quantum teleportation, only information is teleported, not mass. So 

Odysseus needs to have a spare qubit that  will be transformed into Penelope’s 

qubit. In fact, quantum teleportation requires some preparation. Before leav-

ing Penelope in the first place, Odysseus and Penelope need to create a pair of 

entangled qubits. Odysseus takes one with him on his arduous voyage, and 

Penelope keeps one home, close to her heart.

The  process of quantum teleportation is shown in Fig. 4.1. Let’s start with 

the top two qubits, initially 0 0 . Penelope applies an H gate to the  middle 

qubit, resulting in 
1

2
0 + 1( ) 0 . Next, a CNOT gate is applied. Since the 

CNOT gate acts on both qubits, the two qubits must be close together; this 

step must occur before Odysseus departs with his qubit. The CNOT gate 

transforms 
1

2
0 + 1( ) 0 =

1

2
0 0 + 1 0( )  to 

1

2
0 0 + 1 1( ), an 

entangled state.

Now, Odysseus sets sail, taking his qubit with him, while Penelope keeps 

hers at home. The qubits remain entangled, no  matter how widely  they’re sep-

arated. An apt  metaphor for Penelope’s and Odysseus’s love.

At some point, Penelope selects a third qubit, α 0  + β 1 . She can select 

this qubit  after Odysseus departs, or before (though if she selects it before he 

departs, she might as well just give it to him then, instead of teleporting it to 
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him  later). Since this third qubit is the bottom qubit in the diagram, we write 

it on the left: α 0 + β 1( )
1

2
0 0 + 1 1( ). Moving 

1

2
 all the way to the 

left, and applying the FOIL multiplication rule, the expression becomes 

1

2
α 0 0 0 + α 0 1 1 + β 1 0 0 + β 1 1 1( ).

Penelope  will next apply a CNOT to the bottom two qubits (the two she 

has). When the bottom qubit (written on the left) is 1 , a NOT is applied to 

the  middle qubit. So the state becomes 
1

2
(α 0 0 0 + α 0 1 1 + β 1 1 0  

+ β 1 0 1 ).

Next, Penelope applies an H gate to the bottom qubit. The H acts on the 

left qubit in all four terms in the preceding expression. The two 0  qubits be-

come 
1

2
0 + 1( ), and the two 1  qubits become 

1

2
0 − 1( ). So, we end 

up with eight terms. It’s a  little tedious, but the final result is 
1

2
α 0 0 0(  

+ α 1 0 0 + α 0 1 1 + α 1 1 1 + β 0 1 0 − β 1 1 0 + β 0 0 1 −

β 1 0 1 ).

To prepare for Penelope’s  measurement of her two qubits, we  will re-

order the eight terms according to common states of the first two qubits (the 

left and  middle qubits). For example, α 0 0 0  and β 0 0 1  both have 0 0  

for the first two qubits, so we  will place them side by side in the sequence 

of eight terms.  Doing the same for 0 1 , 1 0 , and 1 1 , the sequence of 

terms is written 
1

2
α 0 0( 0 + β 0 0 1 + α 0 1 1 + β 0 1 0 + α 1 0 0  

− β 1 0 1 + α 1 1 1 − β 1 1 0 ).

prepared before Odysseus departs ↓

Penelope sends measurement results to Odysseus ↑

|0〉

α|0〉 + β|1〉

Odysseus’s qubits: |0〉 Z

Penelope’s qubits

H

H

Figure 4.1. Quantum teleportation, created using the Quantikz LaTeX 

package.
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Next, we look at each pair in the sequence, and  factor out the common 

states of the first two qubits. So:

α 0 0 0 + β 0 0 1 = 0 0 α 0 + β 1( )

α 0 1 1 + β 0 1 0 = 0 1 α 1 + β 0( )

α 1 0 0 − β 1 0 1 = 1 0 α 0 − β 1( )

α 1 1 1 − β 1 1 0 = 1 1 α 1 − β 0( )

The full expression is then 
1

2
0 0 α 0 + β 1( )⎡⎣ + 0 1 α 1 + β 0( ) +  

1 0 α 0 − β 1( ) + 1 1 α 1 − β 0( )⎤⎦. The 
1

2
 indicates a probability of 

1

2

⎛
⎝⎜

⎞
⎠⎟

2

=
1

4
 for each pos si ble result of Penelope’s  measurements: 0 0 , 0 1 , 

1 0 , and 1 1 . Let’s consider each possibility separately.

If Penelope  measures 0 0 , the state collapses to 0 0 (α 0  + β 1 ). The 

three other terms in the full expression are anchored to the first two qubits 

having a state other than 0 0 . So when Penelope  measures 0 0 , Odysseus’s 

qubit is in the state (α 0  + β 1 ), exactly what Penelope wanted to teleport to 

him! But  there’s only a 25% chance of this lucky result. Odysseus has to be 

told that Penelope obtained the lucky  measurement 0 0 . Since it’s easier to 

transport classical bits than qubits, Penelope sends Odysseus the two bits 00. 

She could simply write  these values on parchment and send it to Odysseus via 

a trusted messenger. In the cir cuit diagram, classical bits are represented by 

the double lines extending upward from the  measurement symbols. The clas-

sical bits act as controls on the NOT and Z gates on Odysseus’s qubit. Since 

both controls are 0, neither the NOT nor the Z gate acts on Odysseus’s qubit, 

which retains the desired state, (α 0  + β 1 ).

If Penelope  measures 0 1 , the state collapses to 0 1 (α 1  + β 0 ). Odys-

seus’s qubit is in the state (α 1  + β 0 ), which  isn’t quite what Penelope was 

trying to convey. So Penelope sends Odysseus the bits 01. The 1 is the 

 measurement result from the  middle qubit, which is the control on Odys-

seus’s NOT gate. So the NOT is applied to Odysseus’s qubit, transforming 

(α 1  + β 0 ) into (α 0  + β 1 ).

If Penelope  measures 1 0 , the state collapses to 1 0 (α 0  − β 1 ). Odys-

seus’s qubit is in the state (α 0  − β 1 ). Penelope sends Odysseus the bits 10. 

This time, the 1 is the  measurement result from the bottom qubit, which is 

the control on Odysseus’s Z gate. So the Z is applied to Odysseus’s qubit, 

transforming (α 0  − β 1 ) into (α 0  + β 1 ).

Last, if Penelope  measures 1 1 , the state collapses to 1 1 (α 1  − β 0 ). 

Odysseus’s qubit is in the state (α 1  − β 0 ). Penelope sends Odysseus the bits 11. 
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Both control bits are 1. First, the NOT transforms Odysseus’s qubit into 

( α 0  − β 1 ), and at last the Z transforms it into (α 0  + β 1 ).

An impor tant detail is that quantum teleportation cannot transmit infor-

mation faster than the speed of light. Even though Penelope’s  measurements 

instantaneously collapse the state of all three qubits, including Odysseus’s dis-

tant qubit, the teleportation is not complete  until Odysseus receives Penelo-

pe’s  measurement results. Penelope’s  measurement results cannot travel faster 

than the speed of light. Even Hermes of the winged sandals, messenger of the 

gods, cannot exceed the speed of light.

Another impor tant fact is that quantum teleportation does not duplicate 

Penelope’s qubit, α 0  + β 1 . Her  measurement collapses this qubit to a com-

putational basis state, 0  or 1 . Her original qubit, α 0  + β 1 , is reconstituted 

by Odysseus only  after the original vanishes from the initial location. This is 

why we say teleportation, not duplication. The impossibility of duplicating a 

generic qubit is called the no- cloning theorem, which we  will see in the next 

chapter.

In summary, quantum teleportation allows Penelope to transmit a qubit 

to Odysseus by sending him two classical bits. The exact opposite  process is 

pos si ble: Penelope can transmit two classical bits to Odysseus by sending him 

a single qubit. This reverse  process is called quantum dense coding, or super-

dense coding. Figure 4.2 shows the cir cuit diagram for superdense coding.

Penelope and Odysseus again prepare an entangled pair of qubits be-

fore Odysseus’s departure: The state of the qubits is initially 0 0 , and 

then Penelope applies an H gate to her qubit, resulting in 
1

2
0 + 1( ) 0 . 

Next,  the CNOT gate transforms 
1

2
0 + 1( ) 0 =

1

2
0 0 + 1 0( ) into 

1

2
0 0 + 1 1( ). At this point, Odysseus sets sail upon the wine- dark sea.

Next, Penelope chooses a two- bit value to send to Odysseus.  There are 

only four possibilities: 00, 01, 10, and 11. She applies to her qubit a gate that 

prepared before Odysseus departs ↓

Penelope’s qubit: |0i

Odysseus’s qubit: |0i

↓ Now Odysseus has both qubits

Penelope applies gate ↑ then sends qubit to Odysseus

H ? H

Figure 4.2. Quantum dense coding, created using the Quantikz LaTeX 

package.
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depends on the value she chooses. This variable gate is represented by a ques-

tion mark in the cir cuit diagram. Let’s go through all four pos si ble gates.

If Penelope wants to send Odysseus the value 00, she applies the identity 

gate, or equivalently no gate at all. Then she sends her qubit to her beloved. 

When Odysseus receives the qubit, he has both qubits, which are still in the 

state 
1

2
0 0 + 1 1( ). Next Odysseus applies a CNOT, with the control on 

the bottom qubit. So the 1 1  term becomes 1 0 . The state of the two 

qubits is now 
1

2
0 0 + 1 0( ) =

1

2
0 + 1( ) 0 = + 0 . Next, Odysseus 

applies an H gate to the bottom qubit, obtaining 0 0 . Last, Odysseus 

 measures both qubits. He is certain to get 0 0 , or 00, exactly what Penelope 

wanted to send him. She was able to send him two bits via a single qubit.

If Penelope wants to send 01 to Odysseus, the question mark in the cir-

cuit diagram should be replaced by a NOT gate. This  will transform the 

state of the qubits from 
1

2
0 0 + 1 1( ) into 

1

2
1 0 + 0 1( ). Then she 

sends her qubit to Odysseus, and he applies a CNOT. The state of the two 

qubits becomes 
1

2
1 1 + 0 1( ) =

1

2
1 + 0( ) 1 = + 1 .  After Odysseus 

applies an H gate to the bottom qubit, the state is 0 1 . When Odysseus 

 measures both qubits, he gets 01.

Penelope uses a Z gate when she wants to send 10. The Z gate trans-

forms the qubits from 
1

2
0 0 + 1 1( ) into 

1

2
0 0 − 1 1( ).  After 

 Odysseus applies a CNOT, the state of the two qubits is 
1

2
0 0 − 1 0( )

=
1

2
0 − 1( ) 0 = − 0 . Then Odysseus applies an H gate to the bottom 

qubit, and the state becomes 1 0 . Odysseus  measures both qubits and ob-

tains 10.

Last, to send 11, Penelope applies an X gate, then a Z gate. The X gate 

transforms the qubits from 
1

2
0 0 + 1 1( )  into 

1

2
1 0 + 0 1( ), and 

the Z gate transforms this into 
1

2
− 1 0 + 0 1( ). Odysseus receives Pe-

nelope’s qubit and then applies a CNOT, transforming the state of the two 

qubits into 
1

2
− 1 1 + 0 1( ) =

1

2
− 1 + 0( ) 1 = − 1 . Then Odysseus ap-

plies an H gate to the bottom qubit, the state of the qubits becomes 1 1 , and 

Odysseus  measures 11.
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Chapter 5

The No- Cloning Theorem
Why We  Can’t Send Messages to the Past

A
s Odysseus contemplates the  dying embers of a cheerless campfire 

on the Trojan coast, let us contemplate the entangled state 
1

2
0 0(

+ 1 1 ). We see that the qubits are certain to be found in matching 

states when they are  measured in the computational basis:  There’s a 50% 

chance of obtaining 0 0 , and a 50% chance of obtaining 1 1 . This is true 

regardless of  whether the qubits are  measured at the same time. Penelope 

could  measure her qubit days or weeks before Odysseus  measures his. But 

as soon as Penelope  measures her qubit, we know exactly what result Odys-

seus  will obtain when he fi nally gets around to  measuring his qubit ( after 

pulling Trojan arrows of out his shield and collapsing in exhaustion in a 

ragged tent). Does Penelope’s  measurement physically alter the state of Od-

ysseus’s distant qubit? Is  there a way for Penelope to manipulate her qubit 

to send instantaneous messages to Odysseus, faster than the speed of light?

We  will see that Penelope would be able to send messages faster than the 

speed of light, if Odysseus  were able to duplicate a qubit in an unknown state. 

However, the no- cloning theorem prohibits the duplication of qubits in un-

known states. We  will now prove the no- cloning theorem.

First, suppose  there’s a  process, CLONE, that copies the state of one qubit 

||A〉〉 onto another qubit originally in state ||B〉〉:

 CLONE[||A〉〉||B〉〉] = ||A〉〉||A〉〉. (5.1)

We want to prove that this  process is impossible. First, we want to write 

the state ||A〉〉 of the qubit we want to copy, in terms of 0  and 1 . As usual, we 

write the generic qubit state in terms of two unknown variables, α and β:

||A〉〉 = α 0  + β 1 .
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Now we just substitute α 0  + β 1 , twice, on the right side of 

CLONE[||A〉〉||B〉〉] = ||A〉〉||A〉〉:

CLONE[||A〉〉||B〉〉] = (α 0  + β 1 )(α 0  + β 1 ).

Using the FOIL multiplication rule,

 CLONE[||A〉〉||B〉〉] = α2 0 0  + αβ 0 1  + βα 1 0  + β2 1 1 . (5.2)

Now, let’s evaluate Eq. (5.1) a dif fer ent way. Let’s first substitute ||A〉〉 =  

α 0  + β 1  into CLONE[||A〉〉||B〉〉]:

CLONE[||A〉〉||B〉〉] = CLONE[(α 0  + β 1 )||B〉〉].

Ordinary algebra lets us multiply both terms in parentheses by ||B〉〉:

 CLONE[||A〉〉||B〉〉] = CLONE[α 0 ||B〉〉 + β 1 ||B〉〉]. (5.3)

Now recall the linearity rule,

WEIGHT(4||DEER〉〉 + 7||SHEEP〉〉) =  

4 × WEIGHT||DEER〉〉 + 7 × WEIGHT||SHEEP〉〉.

The total weight of 4 identical deer and 7 identical sheep is four times the 

weight of one deer plus seven times the weight of one sheep. All quantum gates 

obey this linearity rule. This allows us to pull the α and β outside of the brack-

ets in Eq. (5.3), and allows CLONE to act separately on the two terms:

 CLONE[||A〉〉||B〉〉] = αCLONE[ 0 ||B〉〉] + βCLONE[ 1 ||B〉〉]. (5.4)

On the right side, CLONE[ 0 ||B〉〉] = 0 0 : 0  is cloned. Similarly, 

CLONE[ 1 ||B〉〉] = 1 1 . So Eq. (5.4) becomes

CLONE[||A〉〉||B〉〉] = α 0 0  + β 1 1 .

But! This is dif fer ent from what we found  earlier in Eq. (5.2),

CLONE[||A〉〉||B〉〉] = α2 0 0  + αβ 0 1  + βα 1 0  + β2 1 1 .

The two equations agree only if  either α = 1 and β = 0, or α = 0 and β = 1. 

But we wanted to clone an unknown state, not a very special case ( 0  or 1 ). 

Other than  these two special cases, the CLONE  process generates contradic-

tory results. And since the CLONE  process generates contradictory results, it 

must be impossible, not a realizable  process at all.

Now let’s see how the no- cloning theorem prevents Penelope from sending 

instantaneous messages to Odysseus. Penelope and Odysseus each have one 

qubit in the entangled pair, 
1

2
0 0 + 1 1( ).  If Penelope  measures 0 , she 

immediately knows that Odysseus, who in princi ple may be light- years away, 

 will  measure 0 . But this is not instantaneous communication: Penelope’s re-

sult is random. She could just as easily obtain 1 , which means Odysseus  will 

 measure 1 . Penelope is not choosing the result of Odysseus’s  measurement.
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What if Penelope  measures 0 , but Odysseus does a  measurement that 

results in  either +  or − ? (We called this a  measurement in the x basis, as 

opposed to the computational basis, which is also called the z basis.) Penelo-

pe’s  measurement of 0  puts Odysseus’s qubit in the state 0 . Odysseus’s qubit 

then has a 50% chance of being  measured as + , and a 50% chance of being 

 measured as − .

Now Penelope has an idea: She  will try to send a message to Odysseus 

by choosing to  measure her qubit in  either the z basis or the x basis. So the 

choice of basis is a kind of code. She decides that if she  measures in the z basis, 

she’s trying to send Odysseus the value 0. If she  measures in the x basis, she’s 

trying to send the value 1. Can Odysseus determine the value that Penelope is 

trying to send?

To understand what happens when Penelope  measures in the x basis, 

let’s use Eq. (1.5), 0 =
1

2
+ + −( ) and 1 =

1

2
+ − −( ). Let’s substitute 

 these expressions for each 0  and each 1  in 
1

2
0 0 + 1 1( ) :

1

2
0 0 + 1 1( ) =

1

2

1

2
+ + −( )

1

2
+ + −( ) +

1

2
+ − −( )

1

2
+ − −( )⎡

⎣⎢
⎤
⎦⎥

=
1

2 2
+ + −( ) + + −( ) + + − −( ) + − −( )⎡⎣ ⎤⎦ ,

where I combined all the  factors of 
1

2
. Next, we apply FOIL multiplica-

tion to each of the two products of terms in parentheses:

1

2
0 0 + 1 1( ) =

1

2 2
+ + + + − + − + + − −( )

+ + + − + − − − + + − −( ).

The + −  and − +  terms are subtracted off, and the doubled + +  and − −  

terms eliminate a  factor of 1/2, so fi nally

1

2
0 0 + 1 1( ) =

1

2
+ + + − −( ).

The right side of the equation means that if Penelope  measures in the 

x basis and finds her qubit in state + , then Odysseus’s qubit is also in state + . 

Interestingly, no  matter what basis Penelope chooses, her  measurement  causes 

both qubits to collapse into matching states.

Now, suppose that Penelope wants to send the value 1. She and Odys-

seus agreed in advance that in this case, she  will do a  measurement in the 
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x basis. Suppose she finds her qubit in the state + , which means that Odys-

seus’s qubit is also in the state + . Is  there any  measurement Odysseus can do 

to determine  whether Penelope  measured in the x basis or z basis? Sadly, no. 

If Odysseus  measures in the x basis, he  will obtain + , but all he knows for 

sure is that Penelope’s qubit was not − . He  doesn’t know if Penelope’s qubit 

was found in state + , 0 , or 1 . Penelope could have done a  measurement in 

the z basis, putting Odysseus’s qubit in a 0  or 1  state. Then, Odysseus’s 

 measurement would have had a 50% chance of obtaining the state + . So 

Odys seus’s result, no  matter what it is, cannot determine which basis Penelope 

chose, or which bit value she tried to send him.

But now, suppose that Odysseus can clone his qubit. Suppose he makes 

a hundred copies. He  measures each of them in the z basis. So if Odysseus’s 

original qubit was + , he now  measures a hundred +  qubits in the z basis. 

About half of them  will convert to 0 , and the  others  will convert to 1 . This 

tells him that his original photon was neither 0  nor 1 , and so must have 

been +  or − . Odysseus is able to conclude that Penelope  measured in the x 

basis, so Penelope successfully transmitted the value 1, instantaneously, over 

any distance.

And when Penelope wants to transmit 0, her  measurement (in the z basis) 

yields 0  or 1 , which puts Odysseus’s qubit in the state 0  or 1 . In  either 

case, all 100 of Odysseus’s cloned qubits are found in the same state when 

 measured in the z basis. So Odysseus’s rule is simply to  measure in the z basis, 

and if all his clones are found in an identical state, Penelope has sent 0. If about 

half of his clones are 0  and half are 1 , Penelope has sent 1.

So, if qubit cloning  were pos si ble, the following situation could ensue. 

Odysseus clones his qubit  after Penelope  measures hers, so that Penelope can 

transmit one bit (a 0 or 1) instantaneously with each pair of entangled qubits 

she shares with Odysseus. If they have eight pairs, Penelope can transmit one 

byte of data (8 bits). If they have 8000 pairs, Penelope can transmit 8 kilo-

bytes. With many pairs of entangled qubits, Penelope can send a lot of infor-

mation instantaneously over large distances, faster than the speed of light.

So, if we  were not bound by the no- cloning theorem, we would be able 

to send messages faster than the speed of light. Now let’s see how this would 

enable us to actually send messages back in time.

One of the most surprising results of special relativity is that simultane-

ity depends on the observer: To determine  whether two events occur at the 

same time, we have to specify who’s observing! To understand this, we imag-

ine a flashbulb in the center of a train car. When the bulb flashes, the light 

si mul ta neously reaches the front and back walls of the car— but only accord-

ing to a passenger in the train. To an observer outside the train, the back wall 

of the train car is racing  toward the bulb, so the back wall reaches the incom-

ing light first. The front wall is receding from the bulb, so the light reaches the 

front wall  later. The two events that are genuinely simultaneous, as observed 
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by the train passengers, are genuinely not simultaneous, as observed from the 

ground. All observers are correct. Simultaneity depends on the observer, just 

as “the train’s speed relative to me” depends on who’s speaking.

Einstein did not say that every thing is relative. In fact, the speed of light 

is absolute. To rigidly maintain the speed of light for all observers, time and 

space melt, becoming as fluid as Dali’s clocks. Simultaneity becomes fluid: 

Simultaneity is not absolute but depends on the observer.

The speed of light is so reliable, the passengers in the train decide to use 

it to synchronize their stopwatches.  There’s a stopwatch at the front wall of 

the train car, and another stopwatch at the back wall. The stopwatches are 

programmed to start counting as soon as they receive a pulse of light. As seen 

by the passengers in the train, light from the flashbulb reaches both stop-

watches at the same time. So the stopwatches are perfectly synchronized.

But, seen from outside the train, the light reaches the stopwatch at the 

back wall first. So the stopwatch at the back wall has more time to count; it 

shows a  later time than the stopwatch at the front wall. This rule applies to 

all clocks on the train, regardless of how they are synchronized. So the clock 

in the back is ahead (in time) of the clock in the front. In other words, the 

chasing clock is ahead of the fleeing clock. For example, when the clock in the 

caboose shows 3 pm, the clock in the front car might show noon— according 

to observers outside the train. The passengers on the train insist their clocks 

are perfectly synchronized. Again, all observers are correct! When we ask 

 whether two events are simultaneous, or  whether two clocks are synchronized, 

we have to ask: According to whom?

 These relativistic effects, of course, are significant only at relativistic 

speeds: speeds approaching the speed of light. For our thought experiment, 

we imagine that the train is moving at a relativistic speed relative to the ground.

Next,  we’ll assume that we can send messages instantaneously, which 

means that the message travels infinitely fast (faster than the speed of light) 

from the sender to the receiver. Figure 5.1 shows two train passengers, Caboose 

Carl and Engineer Emma. The two observers on the ground are Stationary 

Steve and Stationary Stella. According to the ground observers, Caboose Carl’s 

clock shows a  later time (say, 3 pm) than Engineer Emma’s clock (noon). Ac-

cording to the train passengers, however, the two clocks are synchronized.

Caboose Carl sends a message to Stationary Steve just as they pass each 

other. For example, Caboose Carl could hold a written note up to the win-

dow for Stationary Steve to read. Perhaps the note is, “Quantum computing 

is awesome.”

Next, Stationary Steve uses his instantaneous communication technology 

(which exists only in this thought experiment). Stationary Steve transmits Ca-

boose Carl’s message to Stationary Stella. Suppose further that the message 

appears on Stationary Stella’s tablet, which she’s holding so that Engineer 

Emma can read it.
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So, according to the train clocks, Engineer Emma, at noon, is reading 

the message that Caboose Carl  won’t send  until 3! If Engineer Emma has 

instantaneous communication technology, she can, at noon, send Caboose 

Carl his own  future message, three hours before he sends it to Stationary 

Steve. (Of course, instantaneous communication— simultaneous transmis-

sion and reception— depends on the observer, since simultaneity depends 

on the observer. If instantaneous communication is available on the train, 

then the communication is instantaneous as seen by  people on the train.) If 

the message sent to the past is harmless (and perhaps even beneficial), like 

“Quantum computing is awesome,” then  there’s not necessarily a paradox. 

The events can be self- consistent, even self- reinforcing: Caboose Carl could 

go out of his way to send Stationary Steve the message that traveled back in 

time to Caboose Carl, before he sent it in the first place.

However, what if Caboose Carl’s message was, “At all cost, avoid send-

ing this message”? Then he’d be motivated, at 3 pm, to do something other 

than what Stationary Steve already saw him do. So the fabric of real ity un-

ravels if we send signals to the past. And this scheme, to send signals to the 

past, relies on instantaneous communication. So we should hope, for the pres-

ervation of real ity, that instantaneous communication is impossible. We saw 

that if Odysseus  were able to clone his qubit, then Penelope would be able to 

transmit messages instantaneously. And the no- cloning theorem prevents 

Odysseus from cloning his qubit, so instantaneous communication is prevented, 

so sending signals to the past is prevented. So the no- cloning theorem preserves 

the fabric of real ity and saves us all. Thank you, no- cloning theorem. You have 

saved the entire universe.

(clock times seen by ground observers)3:00 pm

Caboose Carl Engineer Emma

12:00 pm

Stationary Steve Stationary Stella

Figure 5.1. A relativistic train as seen by observers on the ground.
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Chapter 6

A Nobel Prize in Experimental 
Philosophy

T
he 2022 Nobel Prize in Physics was awarded to Alain Aspect, John 

Clauser, and Anton Zeilinger “for experiments with entangled photons, 

establishing the violation of Bell inequalities and pioneering quantum 

information science.” In this chapter, we  will explore exactly what a Bell 

 inequality is and why it merits a Nobel Prize. We  will examine some of the 

work of the three Nobel laureates. If  you’re antsy to get to quantum algo-

rithms, you can skip this chapter without loss of continuity. This long chapter 

is dense with both math and philosophy and may forever change your under-

standing of real ity. Proceed with caution.

The 2022 Nobel Prize has its roots in a 1935 paper by Einstein and two 

less- famous coauthors (Podolsky and Rosen). The original paper involved the 

position and momentum of entangled particles. We can make the same point 

with our entangled pair of qubits, 
1

2
0 0 + 1 1( ). As  we’ve seen, if both 

qubits are  measured in the computational basis,  we’re guaranteed to get 

matching results: 0 0  or 1 1 .

In quantum theory, a  measurement of  either qubit  causes the state to 

collapse from 
1

2
0 0 + 1 1( ) to  either 0 0  or 1 1 . But, the two qubits 

could be very far apart, perhaps separated by light- years. Can the  measurement 

of one qubit affect the other qubit instantaneously, over any distance, faster 

than the speed of light? Of course not, Einstein argued. Nothing travels faster 

than the speed of light. This assumption is given the technical name locality: 

An object can be affected only by its local environment, including anything 

that can travel to its location at speeds up to the speed of light. In other 

words, an object cannot be affected instantaneously by something that hap-

pens far away.

(Actually, Einstein  didn’t mention locality or the speed of light at all in 

the 1935 paper. He simply wrote that “since at the time of  measurement the 
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two systems no longer interact, no real change can take place in the second 

system in consequence of anything that may be done to the first system.” An 

elaborate exegesis has been constructed around the 1935 paper. The exegesis 

may deviate mildly from Einstein’s original position, but I think the exegesis 

is easier to understand than the original paper, so I’m presenting a version of 

the exegesis.)

If one qubit in the entangled pair is  measured as 0 , we instantaneously 

know that the other qubit  will be 0  whenever it is  measured (in the compu-

tational basis), even though, according to locality, the  measurement of the first 

qubit cannot affect the second qubit so quickly. Einstein’s conclusion is that 

the qubits must have been in the state 0 0  all along, or at least somehow 

preprogrammed to turn out as 0 0  when  measured in the computational 

basis. Realism is what we call the idea that the qubits are preprogrammed with 

their  measurement results. Realism simply means that  measurement reveals 

properties that the objects already have; the  measurements do not conjure the 

properties out of thin air.

So Einstein’s argument is that common sense seems to demand locality, 

and locality, applied to our entangled pair, demands realism. The combina-

tion of locality and realism is called local realism: Objects have well- defined 

properties regardless of  whether anyone’s  measuring or observing them, and 

regardless of  whether anyone’s  measuring any distant objects. Local realism 

is an everyday, commonsense assumption, and we might call it a philosophi-

cal assumption. If we believe that an apple has a weight even when  we’re not 

weighing it, then we believe in realism. If we believe that weighing an apple 

has no effect on the weight of a pear, then we believe in locality.

We  will see that it’s pos si ble to do an experiment to test  these philosoph-

ical assumptions. In physics, philosophy is more than theory. Philosophy can 

make specific, quantitative predictions that we can test in the lab: We can do 

experimental philosophy. In fact, from the comfort of your web browser, you 

can do the philosophical experiment— a version of a Nobel Prize– winning 

experiment— with IBM Quantum.

But first, let’s return to 1935. Einstein argued that the entangled pair all 

along has properties causing the eventual  measurement to yield  either 0 0  

or 1 1 . But quantum theory only predicts a 50% chance of  either outcome. 

Therefore, Einstein concluded, quantum theory is incomplete: Quantum the-

ory is ignorant of the properties that determine, with certainty, the results of 

 measurement. In fact, the title of the 1935 paper is “Can Quantum- Mechanical 

Description of Physical Real ity Be Considered Complete?” Einstein’s answer 

is a resounding no. A complete theory, he argued, would replace quantum- 

mechanical probabilities with certainties. The certainties establish realism (all 

the properties that might be  measured are predetermined), and realism guar-

antees locality (the two qubits in de pen dently are preprogrammed with the re-

sults of all pos si ble  measurements, so the  measurement of one qubit  doesn’t 

affect the other; in fact, the  measurement of one qubit  doesn’t even affect that 
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qubit; the  measurement merely reveals a preexisting property). Local realism 

banishes the mystery as to why the two qubits end up in matching states ( 0 0  

or 1 1 ): They  were in well- defined matching states from the beginning; they 

 were never in a fuzzy blend of probabilities.

Einstein never said quantum mechanics was wrong. Even in 1935,  there 

was plenty of data to prove that it was accurate. Einstein said only that it was 

incomplete, and he hoped that someone would complete it, preserving its ac-

curate predictions while eliminating its ignorance, replacing its probabilities 

with certainties.

For nearly three  decades, Einstein’s hope was perfectly legitimate. But then, 

in 1964, John Bell proved that quantum theory is inherently inconsistent with 

local realism. So if existing quantum theory is accurate, local realism is impossi-

ble. And if local realism is valid, then existing quantum theory must be flawed. 

Bell showed that local realism imposes a mathematical constraint on  measurable 

results. The constraint imposed by local realism is called a Bell  inequality. Bell 

showed that quantum theory disobeys Bell inequalities. But the real question is 

this: Does real ity obey Bell inequalities, in conformity with local realism? Or 

does real ity disobey Bell inequalities, in compliance with quantum theory?

 Here’s a personal anecdote to emphasize that fact that local realism im-

poses constraints. I was at a meeting of professors teaching interdisciplinary 

courses. I was  there  because I was teaching an interdisciplinary course about 

quantum entanglement and Bell inequalities. Another professor was  there 

 because he was teaching a course about local and sustainable agriculture. Mak-

ing the point that not all food can be grown locally, he said, “Localism im-

poses constraints.” How uncanny! The point of his course was that localism 

imposes constraints, and the point of my course was that locality imposes 

constraints.

Clauser, one of the recipients of the 2022 Nobel Prize, published a vari-

ation of the original Bell  inequality in 1969. This variation is called the CHSH 

 inequality,  after Clauser and his coauthors (Horne, Shimony, and Holt). Then 

in 1972, Clauser and his student, Stuart Freedman, did the first experimental 

test of a Bell  inequality. They showed that real ity disobeyed the Bell  inequality, 

proving that local realism is invalid, or at least that it  doesn’t apply to entan-

gled particles.

We  will now derive the CHSH  inequality and test it experimentally with 

IBM Quantum. The CHSH  inequality is usually written in terms of variables 

A and B, which conventionally represent the  measurements of Alice and Bob. It 

would be confusing for A and B to represent the  measurements of Penelope and 

Odysseus, so we  will release Penelope and Odysseus to their customary tasks 

(fending off suitors and defeating Trojans, respectively). We now meet our new 

heroes, Athena and Bellerophon, who became experts in entanglement when 

working together to lasso Pegasus (who attempted to remain unentangled).

IBM’s qubits are made of superconducting cir cuits, but the CHSH 

 inequality applies to any pair of entangled objects. In fact, we want the CHSH 
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 inequality to apply to as many scenarios as pos si ble: entangled photons, en-

tangled electrons,  etc. We want to describe our experiment as generically as 

pos si ble so that it applies as broadly as pos si ble.

We imagine a system consisting of two objects, A and B, that are  measured 

separately, as shown in Fig. 6.1. Each  measurement device has two settings, 

labeled 1 and 2. We do not need to specify the nature of the objects or the 

 measurements, except that each  measurement yields one of two results, which 

we  will designate as +1 and −1.  These two numbers are arbitrary, analogous 

to assigning +1 to “heads” and −1 to “tails” when recording the results of a 

coin toss. Similarly, if our objects are silver atoms of the type used in Chap-

ter 1, +1 could indicate “deflected  toward the north pole of a magnet,” −1 

could indicate “deflected  toward the south pole of a magnet,” and the 

 measurement settings control the orientation of the magnet.

The  measured result (±1) for object A is called A1 when the  measurement 

setting is 1, and the  measured result is called A2 when the  measurement set-

ting is 2. B1 and B2 are defined similarly for the  measurements of object B.

For each pair of objects A and B, Athena chooses one  measurement 

setting for object A (so she’s  measuring  either A1 or A2 but not both), and 

Bellerophon chooses one  measurement setting for object B (so he’s  measuring 

 either B1 or B2 but not both). Suppose they  measure A1 and B1 for many pairs 

of objects. For each pair of objects, they choose to calculate the product A1B1, 

which must be ±1. They can then find the average of A1B1. Similarly, they can 

find the averages of A1B2, A2B1, and A2B2.

Next, we define the quantity

 S = A1B1 − A1B2 + A2B1 + A2B2. (6.1)

S does not have any obvious physical significance; it’s just something we can 

calculate if we know all four variables on the right side of the equation. Since 

each of  these four variables is ±1, S must be ±2: S = A1(B1 − B2) + A2(B1 + B2), 

and one of the quantities in parentheses must be 0 and the other must be ±2, 

1

1

B

A

2

2

Figure 6.1. Detectors with two settings. Adapted from Jed Brody and Robert 

Avram, “Testing a Bell  Inequality with a Remote Quantum Pro cessor,” The 

Physics Teacher, March 2023, https:// doi . org / 10 . 1119 / 5 .0069073.

https://doi.org/10.1119/5.0069073


A Nobel Prize in Experimental Philosophy  49

and the variables in front of the parentheses are ±1. If that’s not clear, we list 

in  Table 6.1 all pos si ble combinations of values of A1, A2, B1, and B2.

Since S must be ±2, the average of S for many pairs of objects must be 

between −2 and +2: −2 ≤ Saverage ≤ 2. This is the CHSH  inequality. Restated in 

terms of Eq. (6.1), and using  angle brackets to represent averages,

  <S> = <A1B1> − <A1B2> + <A2B1> + <A2B2> (6.2)

must be between −2 and 2. That’s it! That’s the CHSH  inequality, a constraint 

imposed by the philosophical assumption of local realism. The assumption of 

local realism is subtle: S depends on both A1 and A2, so Eq. (6.1) implicitly 

assumes that A1 and A2 both exist for  every object A, even though only one of 

the two variables is  measured; this is realism. We also implicitly assume that 

A1 and A2 do not depend on the  measurement setting for object B; this is lo-

cality. In other words, Bellerophon’s  measurement setting does not affect the 

result of Athena’s  measurement.

In contrast with local realism, quantum theory predicts that the CHSH 

 inequality can be disobeyed. To disobey the CHSH  inequality, we need quan-

tum entanglement. As in previous chapters, we create the entangled pair 

1

2
0 0 + 1 1( ) with the cir cuit in Fig. 6.2.

 Table 6.1

A1 A2 B1 B2 S = A1B1 − A1B2 + A2B1 + A2B2

+1 +1 +1 +1 +2

+1 +1 +1 −1 +2

+1 +1 −1 +1 −2

+1 +1 −1 −1 −2

+1 −1 +1 +1 −2

+1 −1 +1 −1 +2

+1 −1 −1 +1 −2

+1 −1 −1 −1 +2

−1 +1 +1 +1 +2

−1 +1 +1 −1 −2

−1 +1 −1 +1 +2

−1 +1 −1 −1 −2

−1 −1 +1 +1 −2

−1 −1 +1 −1 −2

−1 −1 −1 +1 +2

−1 −1 −1 −1 +2
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Next, we need to establish two ways to  measure each of the two qubits 

so that Athena can perform  measurements of A1 and A2 (on the bottom qubit), 

and Bellerophon can perform  measurements of B1 and B2 (on the top qubit). 

Regardless of how a qubit is made, 0  can represent “spin up” (an arrow in the 

+z direction), and 1  can represent “spin down” (an arrow in the −z direction). 

A detailed familiarity with spin is unnecessary. We need to know only that 

spin is a property that can be  measured in dif fer ent directions. Figure 6.3 

gives the geometric repre sen ta tion of 0  and 1 .

The figure shows the xz- plane of something called the Bloch sphere, and 

the arrows are known as Bloch vectors. To represent an arrow in an arbitrary 

direction in the xz- plane, we can use the qubit

 ||θ〉〉 = cos(θ/2) 0  + sin(θ/2) 1 . (6.3)

Let’s understand why this equation agrees with the figure. We have to remem-

ber some basic trigonometry:

cos(0°) = 1  sin(0°) = 0

cos(45!) =
1

2
sin(45!) =

1

2

cos(90°) = 0  sin(90°) = 1

q[0]

q[1] H

Figure 6.2. A cir cuit to produce an entangled state, created using IBM 

Quantum.

|0i

|1i

|θi
θ

z

x

Figure 6.3. The xz- plane of the Bloch sphere. Originally published in Jed 

Brody and Robert Avram, “Testing a Bell  Inequality with a Remote Quan-

tum Pro cessor,” The Physics Teacher, March 2023, https:// doi . org / 10 . 1119 / 5 

.0069073.

https://doi.org/10.1119/5.0069073
https://doi.org/10.1119/5.0069073
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Let’s examine Eq. (6.3) when θ = 0°. According to the Fig. 6.3, when θ is 0°, 

||θ〉〉 should coincide with 0 : an arrow in the +z direction. Does Eq. (6.3) agree? 

If we plug θ = 0° into Eq. (6.3), we get ||θ = 0°〉〉 = cos(0°) 0  + sin(0°) 1  = 0 . 

Equation (6.3) works!

Let’s try θ = 180°. According to the figure, ||θ〉〉 should now point straight 

down, coinciding with 1 , in the −z direction. Plugging θ = 180° into Eq. (6.3), 

we get ||θ = 180°〉〉 = cos(180°/2) 0  + sin(180°/2) 1  = cos(90°) 0  + sin(90°) 1  = 

1 . Again, success!

Recall that a  measurement that yields 0  or 1  is called a  measurement 

in the computational basis, which is also called the z basis. It’s called the z 

basis  because the two pos si ble  measurement results correspond with the +z 

and −z directions of the Bloch sphere. Similarly, a  measurement in the x basis 

yields  either + =
1

2
0 + 1( ) or − =

1

2
0 − 1( )  because the corre-

sponding arrows point in  either the +x or −x directions.

So let’s examine θ = 90°, which should make ||θ〉〉 point in the +x direc-

tion. Plugging θ = 90° into Eq. (6.3), we get θ = 90° = cos(90° 2) 0 +  

sin(90° 2) 1 =
1

2
0 + 1( ) = + .  As promised, an arrow pointing in the +x 

direction corresponds with a pos si ble result of  measuring in the x basis.

 Every  measurement in IBM Quantum yields 0 or 1, representing a 

 measurement of spin along the z axis. To effectively  measure spin in any other 

direction in the xz- plane, we need to rotate the arrow from the direction we 

want, onto the z axis.  There’s a quantum gate that accomplishes this: Ry(−θ). 

The subscript indicates rotation around the y axis, which is perpendicular to 

the plane of Fig. 6.3. Ry(−θ) affects 0  and 1  as follows:

 Ry(−θ) 0  = cos(θ/2) 0  − sin(θ/2) 1 , (6.4)

and

 Ry(−θ) 1  = sin(θ/2) 0  + cos(θ/2) 1 . (6.5)

Positive θ represents clockwise rotation in the figure, which is why we apply 

Ry(−θ), which effects a counterclockwise rotation from the  measurement 

direction onto the z axis. It requires some algebra, but we could combine 

Eqs. (6.3)–(6.5) to show that Ry(−θ)||θ〉〉 = 0 : The Ry(−θ) gate, applied to ||θ〉〉, 
rotates the arrow counterclockwise  until it coincides with 0 .

Athena  measures the first qubit along the direction specified by an  angle 

α, and Bellerophon  measures the second qubit along a direction specified 

by  an  angle β. This means that Athena has to apply Ry(−α) to her qubit 

 before  measuring in the computational basis, and Bellerophon has to apply 

Ry(−β). Applying Ry(−α) to the left qubit and Ry(−β) to the right qubit in 

our  entangled state, 
1

2
0 0 + 1 1( ), we get 

1

2
Ry(−α) 0 Ry(−β) 0 +⎡⎣  

Ry(−α) 1 Ry(−β) 1 ⎤⎦.
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Now can use Eqs. (6.4) and (6.5), replacing θ with α or β. We obtain 

1

2
cos

α
2

0 − sin
α
2

1
⎛
⎝⎜

⎞
⎠⎟ cos

β
2

0 − sin
β
2

1
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

+ sin
α
2

0 + cos
α
2

1
⎛
⎝⎜

⎞
⎠⎟  

sin
β
2

0 + cos
β
2

1
⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥
.  Using FOIL multiplication, we arrive next at 

1

2
cos

α
2

cos
β
2

0 0 − cos
α
2

sin
β
2

0 1 − sin
α
2

cos
β
2

1 0 + sin
α
2

sin
β
2

1 1
⎛
⎝⎜

⎞
⎠⎟

⎡
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+ sin
α
2

sin
β
2

0 0 + sin
α
2

cos
β
2

0 1 + cos
α
2

sin
β
2

1 0 + cos
α
2

cos
β
2

1 1
⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥
.

Combining terms with the same kets gives us 
1

2
cos

α
2

cos
β
2
+

⎛
⎝⎜
⎡
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sin
α
2

sin
β
2

⎞
⎠⎟ 0 0 + − cos

α
2

sin
β
2
+ sin

α
2

cos
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2

⎛
⎝⎜

⎞
⎠⎟ 0 1 + − sin
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2
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cos
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2

sin
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2

⎞
⎠⎟ 1 0 + sin
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2

sin
β
2
+ cos

α
2

cos
β
2

⎛
⎝⎜

⎞
⎠⎟ 1 1

⎤
⎦⎥
.

Next we have to apply the trigonometry identities cos(α − β) = cosαcosβ  

+ sinαsinβ, and sin(α − β) = sinαcosβ − cosαsinβ. Who would have thought 

that trigonometry has relevance in an experimental investigation of the 

 ultimate nature of real ity! Using  these identities, the expression simplifies to 

1

2
cos

α − β
2

0 0 +
1

2
sin

α − β
2

0 1 +
1

2
sin

β − α
2

1 0 +  

1

2
cos

α − β
2

1 1 .

The probability of each result is found by squaring the probability am-

plitudes in the preceding final expression. So the probabilities of  measuring 

the results 00, 01, 10, and 11 are

 P(00) =
1

2
cos2 α − β

2
,  (6.6)

 P(01) =
1

2
sin2 α − β

2
,  (6.7)

 P(10) =
1

2
sin2 α − β

2
,  (6.8)

and

 P(11) =
1

2
cos2 α − β

2
,  (6.9)

respectively.

In the derivation of the CHSH  inequality, the two pos si ble  measurement 

results are +1 and −1, not 0 and 1. To match the assumptions made in the 

derivation of the CHSH  inequality, we must map the Boolean labels (0 and 1) 

to the “spin” values used in calculations (+1 and −1). This seems a  little fishy, 
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but both pairs of labels, 0/1 and +1/−1, are arbitrary. 0   doesn’t mean  there’s 

0 of something, and 1   doesn’t mean  there’s 1 of something. We could easily 

substitute 0  = ||+1〉〉 and 1  = ||−1〉〉, or, for that  matter, 0  = ||cat〉〉 and 1  = ||dog〉〉, 
or 0  = ||pancreas〉〉 and 1  = ||argyle〉〉. The physical real ity is simply that  there 

are two pos si ble  measurement results, which we can label any way we like. 

We can map one pair of labels to another pair of labels, as long as  we’re con-

sistent. Now, we want to map 0 to +1, and 1 to −1.

So when we  measure 00, we map each 0 to +1 and obtain the product 

(+1)(+1) = +1; recall that Athena and Bellerophon want to multiply their re-

sults together for each pair of qubits. Proceeding to 01, 10, and 11, we ob-

tain  Table 6.2.

The product of the two spin values is +1 for 00 and 11, and the product 

of the two spin values is −1 for 01 and 10. So P(00) + P(11) is the probability 

that the product is +1, and P(01) + P(10) is the probability that the product is 

−1. Recall that Athena and Bellerophon wanted to find that average of the 

product of the results, <AB>. One way to find an average is to find the sum of 

each pos si ble result multiplied by its probability. For example, if 1/5 of the 

 people in a group are 5 feet tall, 2/3 are 6 feet tall, and 2/15 are 15 feet tall, 

then the average height is (5 feet) × (1/5) + (6 feet) × (2/3) + (15 feet) × (2/15) = 7 

feet tall. (The  giants  really bring up the average.) Following the same logic, 

the average of the product of the Athena’s result and Bellerophon’s result is

  <AB> = (+1) × P(00) + (−1) × P(01) + (−1) × P(10) + (+1) × P(11). (6.10)

<AB> is called a quantum correlation, or a spin correlation. If A and B 

are always the same (00 or 11), the quantum correlation is +1. If A and B are 

always dif fer ent from each other (01 or 10), the quantum correlation is −1. If 

A and B are equally likely to be the same or dif fer ent, the quantum correla-

tion is 0.

Combining Eqs. (6.6)–(6.10),

 

<AB> =
1

2
cos2 α − β

2
− 1

2
sin2 α − β

2
− 1

2
sin2 α − β

2
+

1

2
cos2 α − β

2

= cos2 α − β
2

− sin2 α − β
2

= cos(α − β),  (6.11)

using a final trigonometry identity, cos(2θ) = cos2θ − sin2θ.

 Table 6.2

Result (Boolean labels) Product of spin values

00 (+1)(+1) = +1

01 (+1)(−1) = −1

10 (−1)(+1) = −1

11 (−1)(−1) = +1
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At long last, we can calculate <S> in the CHSH  inequality. If α1, α2, β1, 

and β2 are the  measurement  angles for  measurements of A1, A2, B1, and B2, 

respectively, then Eqs. (6.2) and (6.11) give the quantum prediction for  

<S>: cos(α1 − β1) − cos(α1 − β2) + cos(α2 − β1) + cos(α2 − β2). If we choose α1 = 0°, 

α2 = 90°, β1 = 45°, and β2 = 135°, then we find <S> = 2 2,  contradicting the 

CHSH  inequality, −2 ≤ <S> ≤ 2. So we have two conflicting predictions for 

<S>, and we need to do an experiment to see which, if  either, is correct. Is the 

commonsense philosophical assumption of local realism correct? Or is quan-

tum theory correct? A lot is riding on this experiment!

Actually, experimental error tends to reduce the magnitude of <S>, so the 

quantum prediction of 2 2  is never perfectly achieved. The goal of the ex-

periment is  really to test the CHSH  inequality, −2 ≤ <S> ≤ 2, which is the com-

monsense prediction of local realism.

Figure 6.4 shows the cir cuit to determine <A1B1>. When Athena makes 

an A1  measurement, her  measurement  angle is α1 = 0°: Her  measurement is in 

the z direction, the computational basis, so she  doesn’t need to use a rotation 

gate. Bellerophon is making a B1  measurement, so he uses the  measurement 

 angle β1 = 45°, which is π/4 radians. This is shown in the Ry gate.

Figure  6.5 shows the cir cuit to determine <A1B2>, with α1 = 0° and 

β2 = 135°. Figure 6.6 shows the cir cuit for <A2B1>, with α2 = 90° and β1 = 45°. 

And last, Fig. 6.7 shows the cir cuit for <A2B2>, with α2 = 90° and β2 = 135°. 

I ran each cir cuit 1024 times on ibmq_belem.  Table 6.3 shows the number 

of times 00, 01, 10, and 11 occurred. For each cir cuit, I want to estimate the 

probabilities of  measuring 00, 01, 10, 11. Since 00 occurs 312 times out 

of  the 1024 times I ran the A1B1 cir cuit, I estimate the probability as 

P(00) = 312/1024 = 0.305. Calculating all probabilities this way, we obtain 

 Table 6.4. The final column uses Eq. (6.10) to calculate spin correlations from 

probabilities.

At last we can use Eq. (6.2) to calculate <S>: <S> = 0.473 − (−0.506) +  

0.621 + 0.625 = 2.225. It’s greater than 2, so the CHSH  inequality is disobeyed! 

Let’s take a moment to stand agog and aghast. We showed that the only pos-

q[0]

q[1]

c2

H

RY
(-pi / 4)

0 1

Figure 6.4. A cir cuit to  measure <A1B1>, created using IBM Quantum. 

Adapted from Jed Brody and Robert Avram, “Testing a Bell  Inequality with 

a Remote Quantum Pro cessor,” The Physics Teacher, March 2023, https:// 

doi . org / 10 . 1119 / 5 .0069073.

https://doi.org/10.1119/5.0069073
https://doi.org/10.1119/5.0069073
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c2

H

RY
(-3 * pi / 4)
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Figure 6.5. A cir cuit to  measure <A1B2>, created using IBM Quantum. 

Adapted from Jed Brody and Robert Avram, “Testing a Bell  Inequality with 

a Remote Quantum Pro cessor,” The Physics Teacher, March 2023, https:// 

doi . org / 10 . 1119 / 5 .0069073.
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RY
(-pi / 2)
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Figure 6.6. A cir cuit to  measure <A2B1>, created using IBM Quantum. 

Adapted from Jed Brody and Robert Avram, “Testing a Bell  Inequality with 

a Remote Quantum Pro cessor,” The Physics Teacher, March 2023, https:// 

doi . org / 10 . 1119 / 5 .0069073.

Figure 6.7. A cir cuit to  measure <A2B2>, created using IBM Quantum. 

Adapted from Jed Brody and Robert Avram, “Testing a Bell  Inequality with 

a Remote Quantum Pro cessor,” The Physics Teacher, March 2023, https:// 

doi . org / 10 . 1119 / 5 .0069073.
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 Table 6.3

00 01 10 11

A1B1 cir cuit 312 211 59 442

A1B2 cir cuit 65 461 310 188

A2B1 cir cuit 251 68 126 579

A2B2 cir cuit 241 69 123 591

https://doi.org/10.1119/5.0069073
https://doi.org/10.1119/5.0069073
https://doi.org/10.1119/5.0069073
https://doi.org/10.1119/5.0069073
https://doi.org/10.1119/5.0069073
https://doi.org/10.1119/5.0069073
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si ble values of S, for each pair of qubits, are +2 or −2. Since the only pos si ble 

values of S are +2 and −2, surely the average value of S is between −2 and +2. 

This is a constraint mandated by common sense. And yet nature disobeys this 

constraint! Experimentally, we find that the average value of S exceeds 2!

Where did we go wrong? All we used was basic logic and arithmetic. Did 

we just invalidate arithmetic? Do we need to inform elementary math teach-

ers, so they stop spreading their insidious lies? No, arithmetic  isn’t the prob-

lem  here. But some false assumption,  whatever it may be, leads to a constraint 

flagrantly disregarded by nature.

Let’s look again at our equation:

S = A1B1 − A1B2 + A2B1 + A2B2.

If A1, A2, B1, and B2 are physical properties that exist all along,  independent 

of  measurement, and each of  these properties is represented by +1 or −1, then 

S must indeed be  either +2 or −2, and the average of S must indeed be be-

tween −2 and +2. Since this constraint is disobeyed, we can only conclude that 

the particles’ properties (A1, A2, B1, and B2) do not exist all along,  independent 

of  measurement.

In quantum theory, S exists only as an average over many qubit pairs. (In 

other words, <S> exists, but S is undefined for a single qubit pair.) We define 

the average of S as the average of (A1B1 − A1B2 + A2B1 + A2B2). Even if A1 and 

A2  don’t both exist for a single qubit, the average of A1B1 exists for the many 

qubit pairs for which Athena  measures A1 and Bellerophon  measures B1; and 

similarly, the average of A2B1 exists for the many qubit pairs for which Ath-

ena  measures A2 and Bellerophon  measures B1. So we obtain the average of 

each of the four terms from dif fer ent sets of qubit pairs. We combine  these 

four averages to obtain the average of S, a quantity that may exist only as an 

average, not a property of any individual qubit pair. But again, if S does exist 

for each qubit pair, then the average of S must not exceed 2. And the assump-

tion that S exists for each qubit pair is much like the assumption that my height 

and weight both exist even when I’m not  measuring them.

We find in the laboratory, again and again, that nature disobeys our com-

mon sense. While disobeying our common sense, nature si mul ta neously ad-

heres to a dif fer ent set of formulas,  those established by quantum mechanics.

 Table 6.4

00 01 10 11

A1B1 cir cuit 0.305 0.206 0.058 0.432 < A1B1> = 0.473

A1B2 cir cuit 0.063 0.450 0.303 0.184 < A1B2> = −0.506

A2B1 cir cuit 0.245 0.066 0.123 0.565 < A2B1> = 0.621

A2B2 cir cuit 0.235 0.067 0.120 0.577 < A2B2> = 0.625
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This puts physicists in a pickle. Quantum mechanics accurately predicts 

the outcomes of  measurements, but we  don’t know what to say about parti-

cles when  we’re not looking at them; all we know for sure is that our com-

mon sense gets it wrong. So, the interpretation of quantum mechanics remains 

a topic of speculation, controversy, equivocation, or indifference.

Some physicists argue that unobserved particles are simply none of our 

business; the business of physics is predicting observations. Let  philosophers 

 handle the unobserved particles. Physicists thus divest themselves of awkward 

questions and focus on what they do best. This viewpoint is admirably  humble 

in its acknowl edgment of the limitations of physics. Or is it just lazy?

Some physicists. like Deutsch, argue that  every pos si ble  measurement out-

come occurs si mul ta neously in parallel universes. Impassioned arguments are 

made for and against this “many worlds interpretation” (MWI). In its  favor, 

MWI avoids the distinction between abrupt  measurements and smooth evo-

lution of probabilities. The laws of quantum mechanics provide probabilities 

of dif fer ent outcomes. What, ultimately, determines which outcomes occur and 

which  don’t? MWI circumvents this question entirely  because all outcomes 

occur. And it explains the flaw in our equation for S like this: A1 and A2 exist in 

separate universes, so in a single universe, we  can’t define S, which depends on 

both. Specifically, Athena’s qubit has the property A1 in the universe where she 

 measures A1, and it has the property A2 in the universe where she  measures A2. 

In any one universe, Athena can  measure only one of the two properties, so 

the qubit comes preprogrammed only with the property it needs in the uni-

verse it inhabits. If it comes preprogrammed with A1, A2  doesn’t exist (in this 

universe), so S, which depends on A2,  doesn’t exist  either. If S  doesn’t exist for 

each pair of qubits, we  can’t prove that the average of S must be less than 2.

Perhaps, if  there is only one universe, the error in our common sense is 

the belief in  free  will. Perhaps we are preprogrammed automatons, or the 

particles  under observation diabolically influence our decisions. This possi-

bility, though unpalatable and strange, is duly considered by physicists and 

 philosophers. We could say Athena’s qubit is preprogrammed only with the 

property A1 (not A2)  because Athena herself is preprogrammed to  measure 

A1. This is called superdeterminism, which every one but physicists just calls 

determinism:  There’s no  free  will. Since  there’s no  free  will, the qubit  doesn’t 

have to be prepared with values for dif fer ent  measurement settings. The one 

setting that  will be chosen was predetermined at the beginning of time, along 

with the result, A1. A2 never existed for this qubit  because it was never an op-

tion  because  there’s no such  thing as options in a superdetermined universe. 

And if A2  doesn’t exist for each qubit, then S  doesn’t exist for each qubit pair, 

so the CHSH  inequality  doesn’t apply.

What if our universe  isn’t superdetermined, but  there’s still some mecha-

nism informing the qubit  whether A1 or A2  will be  measured? More specifi-

cally, can a signal from the  measurement devices reach the qubits before they 

split and (presumably) lose contact with each other? Experiments of this sort 



58  Chapter 6

have actually been performed. Nobel laureate Alain Aspect effectively switched 

 measurement settings while the particles  were in flight  toward the detectors. 

This last- minute switching should invalidate any signal from the  measurement 

device to the location where the particles originated.  There’s no known mech-

anism by which this signal could have any effect, but Aspect got a Nobel Prize 

for invalidating this speculative theory. He showed that the Bell  inequality is 

disobeyed even when the  measurement settings change while the particles are 

in flight. So if the particle somehow knows, from the moment it originates, 

what the  measurement setting  will be, it’s not  because it receives a signal from 

the detector.

Aspect’s experiment investigated, and rejected, the idea that signals from 

the detectors influence the qubits at their point of origin. Perhaps, instead, each 

qubit is influenced by the final settings, when the  measurements occur, on both 

 measurement devices. (We  don’t know how the  measurement settings influ-

ence both qubits;  we’re just supposing they do.) Let’s look at the first two terms 

in S: A1B1 and A1B2.  We’re assuming that the same A1 appears in both terms. 

In other words,  we’re assuming that Athena’s result, A1, is  independent of 

 whether Bellerophon chooses to  measure B1 or B2. If Athena’s result A1 actu-

ally depends on Bellerophon’s distant  measurement setting, then we would 

need two dif fer ent mathematical symbols for A1 (one for each of Bellerophon’s 

 measurement settings). Instead of writing A1 in both cases, we’d have to write 

something like A1,Bellerophon 1B1 − A1,Bellerophon 2B2. But Bellerophon’s results 

could also depend on the Athena’s  measurement settings, so we’d need to 

write A1,Bellerophon 1B1,Athena 1 − A1,Bellerophon 2B2,Athena 1.

So S, instead of depending on four variables (A1, A2, B1, and B2), would 

depend on eight  independent variables. In this case, it would be pos si ble for S 

to exceed 2. This is one pos si ble explanation for our  measurement results. It’s 

a bit strange: Athena’s results depend on Bellerophon’s  measurement settings, 

no  matter how far apart Athena and Bellerophon are.

If we thus accept nonlocality, it’s pos si ble to preserve realism: Each qubit 

is preprogrammed with properties that depend on the settings at both 

 measurement devices. This is strange but straightforward if both qubits are 

 measured si mul ta neously: Each qubit effectively responds to the setting at the 

detector it’s entering, and also to the setting encountered si mul ta neously by 

the distant qubit. Ah, but we saw that simultaneity depends on the observer, 

so Penelope might see Athena and Bellerophon making simultaneous 

 measurements, while Odysseus says Athena’s  measurement comes first, and 

Hector thinks Bellerophon’s  measurement comes first. Now, if Athena’s 

 measurement occurs first, then Bellerophon’s result depends both on his own 

setting at the time he  measures his qubit and on Athena’s setting at the time 

of her  earlier  measurement. But the same two  measurements occur in the op-

posite order for a dif fer ent observer. So does Bellerophon’s result depend on 

Athena’s setting at the time of her  future  measurement? Does Bellerphon’s 

qubit know the  future?
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To avoid this confusion, we might want to scrap both locality and real-

ism: The  measurement of one qubit creates a definite state for both qubits. So 

the qubit  measured second is affected by the  measurement of the first qubit, 

and by the setting of its own,  later  measurement. For all practical purposes, 

this is exactly what happens, and it’s what  we’ve said all along: The state 

1

2
0 0 + 1 1( )  collapses to  either 0 0  or 1 1  when  either qubit is 

 measured in the computational basis. The only controversy is  whether a 

quantum state describes physical real ity, or only our knowledge of it.

Even if dif fer ent observers disagree on which qubit was  measured 

first, each observer’s narrative is self- consistent. If the state collapses from 

1

2
0 0 + 1 1( ) to 0 0 , it  really  doesn’t  matter whose  measurement trig-

gered the collapse. But what if Athena and Bellerophon  measure in dif fer ent 

bases?

Suppose Athena  measures her qubit in the computational basis and ob-

tains 0 . Bellerophon, however,  measures in the x basis and obtains + .  These 

results are self- consistent regardless of which  measurement occurs first. Let’s 

see how.

Odysseus says Athena’s  measurement occurs first and  causes both qubits to 

collapse to 0 0 . Now Bellerophon’s qubit is in state 0 =
1

2
+ + −( ), so 

that when he  measures in the x basis,  there’s a 50% chance of obtaining + .

Hector, on the other hand, says Bellerophon’s  measurement occurs first 

and  causes both qubits to collapse to + + . Athena’s qubit is in state 

+ =
1

2
0 + 1( ), so that when she  measures in the computational basis, 

 there’s a 50% chance of obtaining 0 .

So both observers, Odysseus and Hector, have a self- consistent explana-

tion for the results obtained by both Athena and Bellerophon. Odysseus and 

Hector disagree with each other, unsurprisingly; dif fer ent observers see a 

dif fer ent chronological order, according to special relativity. Odysseus and 

Hector are both correct, and equally correct, from their own perspectives.

Can we ever prove that the  measurement of one qubit physically alters 

the distant qubit? I believe this claim can be neither proven nor disproven. If 

we say that the  measurement of one particle affects the other, we  really mean 

that the first  measurement, of  either particle, affects both; subsequent results 

are determined by this first  measurement.

We’d like to look at Athena’s particle before and  after Bellerophon 

 measures his particle, to see if Bellerophon’s  measurement affects Athena’s par-

ticle. But then the initial observation of Athena’s particle becomes the first 

 measurement that determines subsequent results! Since it’s impossible to do a 

 measurement before the first  measurement, it’s impossible to observe  whether 

the  measurement of one particle physically alters the other.
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Since that  wasn’t confusing enough, let’s look now at an entangled state 

of three qubits, 
1

2
0 0 0 + 1 1 1( ). This trio of entangled qubits is 

named a GHZ state  after a trio of physicists, Greenberger, Horne, and 

Zeilinger (the third recipient of the 2022 Nobel Prize). Suppose we  measure 

all three qubits in the x basis. What results are pos si ble, and with what prob-

abilities? We have to replace each 0  with 0 =
1

2
+ + −( ), and each 1  

with 1 =
1

2
+ − −( ) :

 

1

2
0 0 0 + 1 1 1( ) =

1

4
+ + −( ) + + −( ) + + −( )⎡⎣

+ + − −( ) + − −( ) + − −( )⎤⎦.  (6.12)

To compute + + −( ) + + −( ) + + −( ), we first apply the FOIL rule 

to find that + + −( ) + + −( ) = + + + + − + − + + − − . Next, each 

of  these four terms multiplies each ket in the final + + −( ) :

 

+ + −( ) + + −( ) + + −( ) = + + + + + − + + − + +

+ − − + + + + − + + − −

+ − + − + − − − .  (6.13)

Similarly,

 

+ − −( ) + − −( ) + − −( ) = + + + − + − + − − + +

+ − − + − + + − + + − −
+ − + − − − − − .  (6.14)

In Eq. (6.14), we see a minus sign wherever an odd number of qubits 

are in state − .  These are the terms that cancel out corresponding terms in 

Eq. (6.13), when Eqs. (6.13) and (6.14) are combined in Eq. (6.12):

 

1

2
0 0 0 + 1 1 1( ) =

1

2
+ + + + − − +(

+ + − − + − + − ).  (6.15)

We see that when the three qubits in the GHZ state are  measured in the x 

basis, an odd number of them are found to be + , and an even number of 

them are found to be − . All four outcomes that satisfy this condition are 

equally likely.

 We’ve seen  measurements in the z basis, which yield 0  or 1 .  We’ve seen 

 measurements in the x basis, which yield +  or − . Now, let’s introduce the y 

basis. A  measurement in the y basis yields  either ||i〉〉 or ||−i〉〉, which are defined 

in terms of computational basis states as follows:
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 i =
1

2
0 + i 1( ) (6.16a)

and

 −i =
1

2
0 − i 1( ),  (6.16b)

where i is the square root of −1. The only  thing we need to know about i is 

that i2 = −1. Other wise, it behaves like any other algebraic symbol.

We’d like to write 0  and 1  in terms of ||i〉〉 and ||−i〉〉. Adding Eq. (6.16a) 

to Eq. (6.16b) gives us

 0 =
1

2
i + −i( ).  (6.17a)

Subtracting Eq. (6.16b) from Eq. (6.16a) lets us find

 1 =
1

i 2
i − −i( ).  (6.17b)

Now, suppose that the left and  middle qubits in the GHZ state are  measured 

in the y basis, and the right qubit is  measured in the x basis. So we use 

Eq.  (6.17) to rewrite the left and  middle qubits, and we rewrite the right 

qubit using 0 =
1

2
( + + − )  and 1 =

1

2
( + − − ) :

 

1

2
0 0 0 + 1 1 1( )  =

1

4
i + −i( ) i + −i( ) + + −( )⎡⎣

+
1

i2
i − −i( ) i − −i( ) + − −( )⎤

⎦⎥

=
1

4
i + −i( ) i + −i( ) + + −( )⎡⎣

− i − −i( ) i − −i( ) + − −( )⎤⎦  (6.18)

using i2 = −1. Next, we multiply like we did in Eqs. (6.13) and (6.14) to obtain

  

i + −i( ) i + −i( ) + + −( ) = i i + + i −i + + −i i +

+ −i −i + + i i − + i −i −
+ −i i − + −i −i −  (6.19)

and

  

− i − −i( ) i − −i( ) + − −( ) = − i i + + i −i + + −i i +

− −i −i + + i i − − i −i −
− −i i − + −i −i − .  (6.20)

On the right side of Eq. (6.20), we see a minus sign in front of three kets 

if  there is an even number of minus signs within the ket labels (as  either −  or 
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||−i〉〉).  These are the terms the cancel out terms in Eq. (6.19). So, combining 

Eqs. (6.18) through (6.20) gives us

 

1

2
0 0 0 + 1 1 1( ) =

1

2
i −i + + −i i +(

+ i i − + −i −i − ).  (6.21a)

Equation (6.21a) tells us what happens if we have a GHZ state and  measure 

the first two qubits in the y basis and the third one in the x basis: an odd num-

ber of qubits  will be found in a state whose label includes a minus sign ( either 

−  or ||−i〉〉). What if we want to  measure only the  middle qubit in the x basis, 

and the other two in the y basis? We could repeat the derivation of Eq. (6.21a), 

changing only the order of the three qubits, so that the  middle one is  either 

+  or − :

 

1

2
0 0 0 + 1 1 1( ) =

1

2
i + −i + −i + i(

+ i − i + −i − −i ).  (6.21b)

And if we  measured the first qubit in the x basis, and the other two in the 

y basis, we find

 

1

2
0 0 0 + 1 1 1( ) =

1

2
+ −i i + + i −i(

+ − i i + − −i −i ).  (6.21c)

So, in general, if any one of the qubits is  measured in the x basis, and the other 

two are  measured in the y basis, an odd number of qubits are found in a state 

labeled with a minus.

Quantum theory predicts that Eqs. (6.15), (6.21a), (6.21b), and (6.21c) 

are all correct. We  will now show that according to local realism, the four 

equations cannot all be correct. As we saw with the CHSH  inequality, we have 

two conflicting predictions, one made by quantum theory, and one made by 

local realism. Again, an experiment is needed to determine which prediction 

is correct.

According to local realism,  measurements reveal properties that qubits 

already have. So if we  measure a qubit in the x basis and obtain + , the po-

tential for this result must have been hidden within the qubit all along. Let’s 

say the hidden property, which is revealed by a  measurement in the x basis, is 

called X. Let’s say that X = +1 if the  measurement would find the qubit in state 

+ , and X = −1 if the  measurement would find the qubit in state − .

Similarly, if a qubit is  measured in the y basis and result ||i〉〉 is obtained, 

this result, too, must have been hidden within the qubit all along. Let’s say 

that the hidden property, revealed by a  measurement in the y basis, is called Y. 

Y = +1 if the  measurement would yield ||i〉〉, and Y = −1 if the  measurement 

would yield ||−i〉〉.
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The qubit cannot know in advance if it  will be  measured in the x basis, the 

y basis, or some other basis. So according to local realism, the qubit must hide 

within itself  every property that would be revealed by  every pos si ble  measurement. 

For example, each qubit must have a property X that is revealed by a  measurement 

in the x basis, as well as a property Y that is revealed by a  measurement in the 

y basis. If we have three qubits (call them 1, 2, and 3), we can use subscripts 

(1, 2, 3) on X and Y so we have separate variables for each qubit.

For our GHZ state of three qubits, the first qubit has properties X1 and 

Y1, the second qubit has properties X2 and Y2, and the third qubit has prop-

erties X3 and Y3. Each of  these properties is a number that must be +1 or −1.

According to Eq. (6.15), when all three qubits are  measured in the x basis, 

an even number of them are found in the −  state. This means that if we could 

look at X1, X2, and X3, an even number of them would be −1. So if we multi-

ply the three numbers together,

 X1X2X3 = +1 (6.22)

 because it contains an even number of  factors of −1.

Next, let’s look at Eq. (6.21a). The  measurements on the right side reveal 

Y1, Y2, and X3. We see, in all four terms, that an odd number of −1 results 

occur. This means that

 Y1Y2X3 = −1. (6.23a)

Similarly, Eq. (6.21b) implies that

 Y1X2Y3 = −1, (6.23b)

and Eq. (6.21c) implies that

 X1Y2Y3 = −1. (6.23c)

Now, since Y1 is +1 or −1, in  either case, Y1Y1 = +1. Similarly, Y2Y2 = +1 and 

Y3Y3 = +1. So we can multiply X1X2X3 by (+1)(+1)(+1) without changing it:

 X1X2X3 = X1X2X3(+1)(+1)(+1) = X1X2X3Y1Y1Y2Y2Y3Y3. (6.24)

Reordering variables,

 X1X2X3 = (Y1Y2X3)(Y1X2Y3)(X1Y2Y3). (6.25)

We recognize Eq. (6.23) on the right- hand side. Each of the three terms in 

parentheses is −1, so

 X1X2X3 = (−1)(−1)(−1) = −1. (6.26)

But Eq. (6.26) contradicts Eq. (6.22)! So if local realism is valid,  there 

must be an error in one of our starting points, Eqs. (6.15) and (6.21). But ex-

periment shows that Eqs. (6.15) and (6.21) are both accurate, so local realism 

must be incorrect.
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What can this mean? Do the qubits have no fixed properties before 

 measurement? Do the  measurements conjure the properties out of thin air? 

But then how are the  measurements of the three qubits correlated? Do they 

communicate with one another instantaneously across any distance? Or did 

the qubits somehow know in advance the bases they would be  measured in, 

through  either superdeterminism or some signal containing information about 

the  measurement settings? As stated in an old commercial, in response to the 

question, “How many licks does it take to get to the center of a Tootsie Roll 

Pop?”: The world may never know.
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Chapter 7

Quantum Adder
Like Regular Addition, but Way More Confusing

A 
quantum computer is, in fact, a computer. So we’d like a quantum 

computer to be able to do all the  things a regular computer can do, 

like arithmetic. A quantum computer is not better at arithmetic than 

a regular computer. But I want to analyze a quantum adder to get used to the 

idea that  measurements of multiple qubits represent ordinary numbers: 0, 1, 

2, 3,  etc. This  will help us in the coming chapters when we study the prob-

lems that a quantum computer can solve more efficiently than a regular com-

puter can.

First, we need to understand how to represent any  whole number using 

0’s and 1’s. This is called the binary number system. If we have a single bit, we 

can represent only two numbers: 0 and 1. If we have two bits,  there are four 

pos si ble values: 00, 01, 10, and 11. We can convert  these numbers from bi-

nary (base two) to our ordinary number system (base ten).

To understand binary, we first have to understand base ten. In a base- ten 

number like 365 (the number of days a year that quantum computing is awe-

some), the 3 is in the hundred’s place, the 6 is in the ten’s place, and the 5 is 

in the one’s place: 365 = 3 × 100 + 6 × 10 + 5 × 1. Each digit is multiplied by a 

power of 10. In base two, each binary digit (bit) is multiplied by a power of 

2. The bit on the far right is in the one’s place, but the bit to the left of that is 

in the two’s place: the binary number 10 = 1 × 2 + 0 × 1 = 2, and the binary 

number 11 = 1 × 2 + 1 × 1 = 3. Sometimes we use subscripts to specify the 

base: 102 = 210 and 112 = 310. Often, though, we omit the subscript and infer 

from context  whether  we’re using binary or base ten.

If we have a three- bit number, like 1002, the leftmost bit is in the four’s 

place, so 1002 = 410. And if we have a four- bit number, like 10002, the leftmost 

bit is in the eight’s place, so 10002 = 810. We usually  won’t need more than four 

bits, so we might as well list the 16 pos si ble four- bit numbers, in binary and 

base ten ( Table 7.1).
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What does this have to do with quantum computing?  We’ve already seen 

that we can use a single ket to represent two qubits:

0 0  = ||00〉〉
0 1  = ||01〉〉
1 0  = ||10〉〉
1 1  = ||11〉〉

It’s often  convenient to convert the binary number to base ten inside the ket:

0 0  = ||00〉〉 = 0

0 1  = ||01〉〉 = 1

1 0  = ||10〉〉 = ||2〉〉
1 1  = ||11〉〉 = ||3〉〉

So the general state of two qubits can be written a0 0  + a1 1  + a2||2〉〉 + a3||3〉〉. 
The total probability of obtaining one of the four results is 1, so ||a0||2 + ||a1||2 + 

||a2||2 + ||a3||2 = 1. The result obtained can be interpreted as an ordinary number, 

 either 0, 1, 2, or 3. In slightly dif fer ent words: When we  measure multiple 

qubits at the end of a quantum cir cuit, the result can be converted to a single 

number in base ten. Quantum computers perform computations; the result of 

the computations is a number.

 Table 7.1

Binary number Base- ten equivalent

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15
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Let’s be explicit about how this works for three qubits as well:

0 0 0  = ||000〉〉 = 0

0 0 1  = ||001〉〉 = 1

0 1 0  = ||010〉〉 = ||2〉〉

0 1 1  = ||011〉〉 = ||3〉〉

1 0 0  = ||100〉〉 = ||4〉〉

1 0 1  = ||101〉〉 = ||5〉〉

1 1 0  = ||110〉〉 = ||6〉〉

1 1 1  = ||111〉〉 = ||7〉〉

Prior to  measurement, the state of three qubits may be written a0 0  + a1 1  +  

a2||2〉〉 + a3||3〉〉 + a4||4〉〉 + a5||5〉〉 + a6||6〉〉 + a7||7〉〉. The  measurement (in the computa-

tional basis) effectively collapses the state to a single  whole number, ranging 

from 0 to 7.

Now,  we’re ready to add binary numbers. How would we add two two- 

bit numbers, like 10 + 11? Well, we could convert to base ten and then add, 

2 + 3 = 5, and then convert back to binary: 101. But classical and quantum 

computers alike need to add one bit at a time. So let’s see how that works.

Just as in base- ten addition, we put each number in its own row:

10

+ 11

We add the rightmost column first. 0 + 1 is obviously 1:

10

+ 11

1

In the next column, we have 1 + 1. In binary, this is a two- bit sum, 10. So we 

bring down the 0 and carry the 1:

1

10

+ 11

01

The 1 that we carried is alone in its column, so we bring it straight down, to 

obtain the final sum of 101:

1

10

+ 11

101
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That’s the  whole calculation, but we can be  really explicit that  there was no 

carry when we summed the rightmost column. In other words, the carry was 

0, which we can write over the second column from the right:

1 0

1 0

+ 1 1

1 0 1

Now, let’s repeat this, using algebraic symbols to represent the sum of any 

two two- bit numbers, A1A0 and B1B0. A1, A0, B1, and B0 are all single bits, 0 

or 1. The sum may require three bits, S2S1S0:

A1 A0

+ B1 B0

S2 S1 S0

We also need to keep track of the carry bits:

C2 C1

A1 A0

+ B1 B0

S2 S1 S0

We immediately see that S2 = C2  because nothing  else is in the leftmost col-

umn. Let’s make this explicit:
C2 C1

A1 A0

+ B1 B0

C2 S1 S0

Our task, then, is to compute C2, C1, S1, and S0 in terms of A1, A0, B1 and B0. 

What a herculean task! What an impossible mission! What a perilous quest! 

Now that danger has reared its ugly head, have we bravely turned our tail 

and fled, like Monty Python’s Brave Sir Robin?

Yes. We need to fortify ourselves with an easier prob lem before we re-

turn to our quest. Let’s add two single bits, A0 and B0. The sum may be as 

large as a two- bit number, S1S0. We also need to keep track of the carry, which 

 we’ll call C1:
C1

A0

+ B0

S1 S0

But now, S1 must be C1:

C1

A0

+ B0

C1 S0



Quantum Adder  69

So we need to determine C1 and S0 in terms of A0 and B0 The cir cuit that 

achieves this is called a half adder. The “half” means that  there’s no carry on 

the rightmost column.

We can list all four pos si ble combinations of values of A0 and B0, and 

determine the two- bit sum C1S0 in all four cases.  Table 7.2 shows us that the 

sum is 00 if A0 = B0 = 0, the sum is 01 if exactly one of the two addends is 0, 

and the sum is 10 if A0 = B0 = 1. But  really, we need separate equations for S0 

and C1. We see that C1 is simply the product of A0 and B0:

 C1 = A0B0. (7.1)

(This product of two bits is called the AND operation in Boolean algebra: 

C1 = 1 only when both A0 and B0 are 1.)

In  Table 7.2, we see that S0 is 1 only when A0 is dif fer ent from B0. We 

recall from Chapter 1 that this is exactly the outcome of the exclusive OR 

operation, so

 S0 = A0 ⊕ B0. (7.2)

That completes our half adder. Now we need to make it quantum. Our 

input qubits are ||A0〉〉 and ||B0〉〉, and our cir cuit needs to generate ||C1〉〉 and ||S0〉〉. 
Let’s start with ||S0〉〉. We recall Eq. (3.2e),

CNOT||control〉〉||target〉〉 = ||control〉〉||control ⊕ target〉〉.

According to our convention for cir cuit diagrams, we write the bottom qubit 

on the left. This implies that ||control〉〉 is below ||target〉〉, when we write CNOT 

in the preceding equation. But it’s equally pos si ble to put the control above 

the target, which in fact is the arrangement we  will want. So we  will reverse 

the order of the qubits:

CNOT||target〉〉||control〉〉 = ||control ⊕ target〉〉||control〉〉.

Now, if we make ||A0〉〉 the control and ||B0〉〉 the target,

 CNOT||B0〉〉||A0〉〉 = ||B0 ⊕ A0〉〉||A0〉〉 = ||S0〉〉||A0〉〉, (7.3)

using Eq. (7.2). So we need a single CNOT gate to compute ||S0〉〉, shown in 

Fig. 7.1.

 Table 7.2

A0 B0 C1 S0

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0



70  Chapter 7

So  we’ve computed our sum bit. Now we work on the carry bit. The quan-

tum version of Eq. (7.1) is

 ||C1〉〉= ||A0B0〉〉. (7.4)

To multiply two bits together, we need a new gate, called the Toffoli, or the 

controlled- controlled- NOT. This gate, which acts on three qubits, is shown in 

Fig. 7.2. The Toffoli gate applies a NOT to the target only if both controls are 

1. Suppose that the initial state of the target qubit is 0 , as in Fig. 7.3. The 

target  will be 1  only when A0 and B0 are both 1, which means that the prod-

uct A0B0 is 1. So the target becomes 1  when A0B0 = 1, and other wise (when 

A0B0 = 0) the target remains 0 . In  either case, the final state of the target is 

||A0B0〉〉 = ||C1〉〉, shown in Fig. 7.4. Now we want to combine the cir cuits that 

compute ||S0〉〉 and ||C1〉〉. Since the ||S0〉〉 cir cuit changes ||B0〉〉, we’d better com-

pute ||C1〉〉 first (Fig. 7.5).

|B0〉

|A0〉

|S0〉

|A0〉

Figure 7.1. A cir cuit to compute a sum bit, created using the Quantikz 

LaTeX package.

Figure 7.2. The Toffoli gate, created using the Quantikz LaTeX package.

|A0〉

|B0〉

|0〉

Figure 7.3. The Toffoli gate configured to compute a carry bit, created using 

the Quantikz LaTeX package.

|A0〉

|B0〉

|A0〉

|B0〉

|0〉 |C1〉

Figure 7.4. A cir cuit to compute a carry bit, created using the Quantikz 

LaTeX package.
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Nice!  We’ve now completed our side quest to add two one- bit numbers. 

Having loaded up on  treasure and experience points,  we’re ready to return to 

our main quest, the addition of two two- bit numbers:

C2 C1

A1 A0

+ B1 B0

C2 S1 S0

We know how to compute S0 and C1. But it  will be more complicated to com-

pute S1 and C2.  These two bits each depend on three bits: C1, A1, and B1. The 

cir cuit that performs this calculation is called a full adder.

We first need to construct a  table to show how C2 and S1 depend on C1, 

A1, and B1. We are summing three individual bits to obtain a two- bit result, 

C2S1.  There are eight pos si ble combinations of values of C1, A1, and B1, and 

we need to consider all of them ( Table 7.3).

Let’s start with S1. If we carefully study this column, we observe that S1 

is 1 only when C2, A1, and B1 are all 1, or when exactly one of  these is 1. This 

rule can be written

 S1 = C1 ⊕ A1 ⊕ B1. (7.5)

For example, suppose C1 = A1 = B1 = 1. Then S1 = 1 ⊕ 1 ⊕ 1. We recall that ⊕ is a 

difference detector: It compares two bits and outputs 1 when they are dif fer ent, 

|A0〉

|B0〉

|A0〉

|S0〉

|0〉 |C1〉

Figure 7.5. A half adder, created using the Quantikz LaTeX package.

 Table 7.3

C1 A1 B1 C2 S1

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1



72  Chapter 7

and 0 when they are the same. We can pick any two of the 1’s to combine first: 

1 ⊕ 1 ⊕ 1 = (1 ⊕ 1) ⊕ 1 = 0 ⊕ 1 = 1. To take one more example, suppose C1 is 0, 

but A1 = B1 = 1. Then S1 = 0 ⊕ 1 ⊕ 1 = (0 ⊕ 1) ⊕ 1 = 1 ⊕ 1 = 0. We can go through 

all eight rows of the  table and confirm that Eq. (7.5) works  every time.

Next, let’s look at C2. We see that it is 1 in four cases:

• A1 and B1 and both 1, so A1B1 = 1

• C1 and A1 and both 1, so C1A1 = 1

• C1 and B1 and both 1, so C1B1 = 1

• C1, A1, and B1 are all 1, so C1A1B1 = 1

Let’s see how all four cases are satisfied by this equation:

 C2 = A1B1 ⊕ C1A1 ⊕ C1B1. (7.6)

If A1 = B1 = 1 but C1 = 0, then C2 = 1 ⊕ 0 ⊕ 0 = (1 ⊕ 0) ⊕ 0 = 1 ⊕ 0 = 1. If 

C1 = A1 = 1 but B1 = 0, then C2 = 0 ⊕ 1 ⊕ 0 = 1. Similarly, C2 = 1 if C1 = B1 = 1 but 

A1 = 0. Last, if C1 = A1 = B1 = 1, then C2 = 1 ⊕ 1 ⊕ 1 = 1.

Next, we make Eqs. (7.5) and (7.6) quantum:

 ||S1〉〉 = ||C1 ⊕ A1 ⊕ B1〉〉 (7.7)

and

 ||C2〉〉 = ||A1B1 ⊕ C1A1 ⊕ C1B1〉〉. (7.8)

It’s helpful to remember that each expression in  these kets, no  matter how 

complicated, is a 0 or 1. So Eqs. (7.7) and (7.8) are each  either 0  or 1 , a 

computational basis state for a single qubit.

Let’s work on building the cir cuit for Eq. (7.7). We know that a CNOT 

generates an exclusive OR (Fig.  7.6). To combine with B1, we just need 

another CNOT (Fig. 7.7).

Next, we can work on ||C2〉〉 = ||A1B1 ⊕ C1A1 ⊕ C1B1〉〉. We can start with 

A1B1, which  we’ll put in an extra qubit that starts as 0 , shown in Fig. 7.8. To 

include the next term, C1A1, can we simply add another Toffoli (Fig. 7.9)? 

Yes, this is correct. The second Toffoli applies a NOT to the target if C1A1 = 1. 

We know that one way to apply NOT to a bit is to exclusive- OR it with 1: 

X = X ⊕1. The bottom qubit  after the first Toffoli is ||A1B1〉〉, and it has a NOT 

applied to it if C1A1 = 1. This transforms the bottom qubit into ||A1B1 ⊕ C1A1〉〉. 
A third Toffoli turns the bottom qubit into ||C2〉〉 = ||A1B1 ⊕ C1A1 ⊕ C1B1〉〉, as in 

Fig. 7.10.

Next, we combine our cir cuits for ||S1〉〉 and ||C2〉〉, calculating C2 first 

 because the S1 calculation overrides A1 and B1 (Fig. 7.11). At last, we combine 

this with our half- adder cir cuit, which computes S0 and C1. The half adder has 

to come first to compute C1 for the full adder, in Fig. 7.12.

Let’s test this cir cuit on IBM Quantum. In IBM Quantum, I  can’t label 

the cir cuit diagram exactly the way I do in Fig. 7.12, but I can get it close 



|C1〉

|A1〉

|C1〉

|C1 ⊕A1〉

|B1〉 |C1⊕A1⊕B1〉 = |S1〉

Figure 7.7. A cir cuit that computes the sum of three bits, created using the 

Quantikz LaTeX package.

|C1〉

|A1〉

|C1〉

|C1⊕A1〉

|B1〉 |B1〉

Figure 7.6. Building up to a cir cuit that computes the sum of three bits, 

created using the Quantikz LaTeX package.

|C1〉

|A1〉

|B1〉

|C1〉

|C2〉

|A1〉

|B1〉

|0〉

Figure 7.10. A cir cuit that computes the carry bit from a sum of three bits, 

created using the Quantikz LaTeX package.

|C1〉

|A1〉

|B1〉

|0〉

|C1〉

|A1〉

|B1〉

|A1B1〉

Figure 7.8. Building up to a cir cuit that computes the carry bit from a sum 

of three bits, created using the Quantikz LaTeX package.

|C1〉

|A1〉

|B1〉

|0〉

|C1〉

|A1〉

|B1〉

|A1B1 ⊕C1A1〉

Figure 7.9. Further pro gress  toward a cir cuit that computes the carry bit 

from a sum of three bits, created using the Quantikz LaTeX package.
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|A1〉

|B1〉

|C1〉

|C2〉

|C1  ⊕ A1〉

|S1〉

|0〉

Figure 7.11. A full adder, created using the Quantikz LaTeX package.

|A0〉

|B0〉

|A0〉

|S0〉

|S1〉

|C1〉

|C2〉

|C1  ⊕A1〉

|0〉

|A1〉

|B1〉

|0〉

Figure 7.12. A cir cuit that sums two two- bit numbers, created using the 

Quantikz LaTeX package.

a0[0]

b0[0]

c1[0]

a1[0]

b1[0]

c2[0]

c3
2 1 0

Figure 7.13. A cir cuit that calculates 0 + 0, created using IBM Quantum.
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(Fig. 7.13). By default, all qubits in IBM Quantum start out in state 0 . When 

the cir cuit computes 00 + 00, I expect the sum to be 000. On a simulator, 000 

occurs 100% of the time.  There are no superpositions in the cir cuit. However, 

on a real pro cessor (ibm_oslo), error  causes other results to occur some of the 

time (Fig. 7.14).

Next, how can we compute 1 + 1? This is  really 01 + 01, so A1A0 = B1B0 = 01. 

This means that A0 = B0 = 1. We need NOT gates on ||A0〉〉 and ||B0〉〉 to create 1  

from the default starting state of 0 . ||A0〉〉 and ||B0〉〉 are the top two qubits, so 

we place the NOT gates  there, before the quantum adder (Fig. 7.15). We 
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Figure 7.14. Results from the cir cuit in Fig. 7.13, created using IBM 

Quantum.

a0[0]

b0[0]

c1[0]

a1[0]

b1[0]

c2[0]

c3
2 1 0

Figure 7.15. A cir cuit that calculates 1 + 1, created using IBM Quantum.
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Figure 7.16. Results from the cir cuit in Fig. 7.15, created using IBM 

Quantum.

a0[0]

b0[0]

c1[0]

a1[0]

b1[0]

c2[0]

c3
2 1 0

Figure 7.17. A cir cuit that calculates 1 + 2, created using IBM Quantum.

expect the sum to be 01 + 01 = 010, and this is the most probable result on 

ibm_oslo (Fig. 7.16).

Next, let’s compute 1 + 2 = 01 + 10.  Here, A0 = 1, and B1 = 1, so we place 

NOT gates on ||A0〉〉 and ||B1〉〉, as in Fig. 7.17. We expect the result 01 + 10 = 011, 

and indeed this is the most likely outcome obtained using ibm_oslo (Fig. 7.18).

Last, let’s try 3 + 3 = 11 + 11.  Here, A1, A0, B1, and B0 are all 1, so we need 

four NOT gates (Fig. 7.19). We expected the outcome 3 + 3 = 6 = 110 in binary. 

On a simulator, we get this result 100% of the time. However, on ibm_oslo, 



111110101100011010001000

300

250

200

150

100

50

0

F
re

qu
en

cy

Measurement outcome

Figure 7.18. Results from the cir cuit in Fig. 7.17, created using IBM Quantum.
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c2[0]

c3
2 1 0

Figure 7.19. A cir cuit that calculates 3 + 3, created using IBM Quantum.
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Figure 7.20. Results from the cir cuit in Fig. 7.19, created using IBM Quantum.
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the most likely outcome is 011 (Fig. 7.20). The cir cuit fails on a real pro-

cessor due to excessive error. As the number of gates increases, the error 

accumulates, and false outcomes are more likely. Quantum computing is 

still in its infancy, and we  can’t expect infants to do arithmetic correctly 

 every time.



79

Chapter 8

Grover’s Search
One Algorithm to Rule Them All,  
One Algorithm to Find Them

. . .  one algorithm to bring them all and in the darkness bind them. It’s a refer-

ence to The Lord of the Rings. If you  didn’t get that, I’m revoking your nerd 

badge. I can do that, you know. I’m a Level 30 Nerd with full privileges.

We arrive, at last, at a practical prob lem that quantum computers can 

solve more efficiently than classical computers. At least, in theory. The 

 performance of  today’s quantum computers is restricted by their  limited size 

and high error rate.

Suppose we have a phone book, in alphabetical order by name. Suppose 

we know a phone number, like 739-9201, and we want to know whose num-

ber it is. Maybe  we’re private investigators, and we discovered this phone num-

ber written in spicy ketchup on the shell of a live turtle swimming in a pond 

in a desert oasis.  We’re naturally curious to learn whose number it is. Of course, 

we could just call the number, but we  don’t want to disturb a stranger. We 

perform our investigations at a respectful distance.

So we could search through the phone book  until we find the number. 

That would prob ably take a long time. Suppose  there are a million names in 

the phone book.  Whether we search through the names in alphabetical order, 

or reverse order, or randomly, the desired number is just as likely to turn up 

for our millionth name as our first. If we had to repeat this tedious task for 

many phone numbers, we would expect, on average, to locate each desired 

number  after searching through half the phone book. So our search through 

a million names likely requires half a million attempts. Even if our phone book 

is digital, a classical computer might take a noticeable amount of time to per-

form this search.

On a quantum computer, however, only about a thousand attempts are 

required to search through a million items. That’s an improvement by a  factor 
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of 500, compared with a classical computer. The quantum  process is called 

Grover’s algorithm. Let’s see how it works.

Suppose the first entries in our phone book are as shown in  Table 8.1. To 

configure our phone book for Grover’s algorithm, we first need to assign a 

unique number to each name. The phone numbers  aren’t necessarily unique; 

Achilles and Patroclus, for example, might share the same phone number (to 

save money,  those thrifty fellows). I’ll call the unique number the state num-

ber, and it  will start at 0 ( Table 8.2). In our quantum computer, the state num-

ber is a computational basis state, 0 , 1 , ||2〉〉,  etc. Only one of  these states is 

the Good state, the  Great state, the Grail we seek, so let’s call it ||G〉〉.
We now define an oracle, Uf, that multiplies ||G〉〉 by −1 and has no effect 

on any of the undesired states. So

 Uf||G〉〉 = −||G〉〉 (8.1a)

and

 Uf||j ≠ G〉〉 = ||j ≠ G〉〉 (8.1b)

for all computational basis states ||j〉〉 other than ||G〉〉.
We also need an operator called inversion about the mean. I’m  going to 

represent this operator with the symbol Inv. To understand this operator, let’s 

consider two qubits.  There are four basis states, ||00〉〉 = 0 , ||01〉〉 = 1 , ||10〉〉 = ||2〉〉, 
and ||11〉〉 = ||3〉〉. The most general state of two qubits can be written a0 0  +  

a1 1  + a2||2〉〉 + a3||3〉〉. We can calculate the average, or mean, of the probability 

amplitudes. Let’s call the mean m:

 m =
a0 + a1 + a2 + a3

4
.  (8.2)

 Table 8.1

Name Phone number

Achilles 843-0094

Aeschylus 178-9428

Athena 739-9201

Bellerophon 102-2457

 Table 8.2

State number Name Phone number

0 Achilles 843-0094

1 Aeschylus 178-9428

2 Athena 739-9201

3 Bellerophon 102-2457
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To invert about the mean, we want to take the amplitudes that are greater 

than the mean, and make them lower than the mean, by the same amount that 

they  were initially higher. So if the mean is 0.5, and one amplitude is 0.7, we 

want to reduce this to 0.3: Since it starts out 0.2 above the mean, it must end 

up 0.2 below the mean. This is a  little like a communist theory of justice. The 

amplitudes that are initially below the mean are, in the end, above the mean. 

If the mean is 0.5, and an amplitude starts out at 0.2, it must become 0.8. The 

proletariat rises as the bourgeoisie falls. March on, comrades!

Let’s come up with an equation for inversion about the mean (possibly 

for use by the Communist Bureau of Wealth Re distribution). If a0 is initially 

above the mean, then a0 − m is a positive number: the amount by which a0 is 

above the mean. We want the amplitude to end up below the mean by this 

amount, so we want the amplitude to become m − (a0 − m) = 2m − a0.

We get the same result if a0 is below the mean. In this case, m − a0 is a 

positive number, the amount by which a0 is below the mean. We want the 

amplitude to end up this much higher than the mean: m + (m − a0) = 2m − a0. 

So  after inversion about the mean, a0 changes to 2m − a0, a1 changes to 2m − a1, 

 etc. Combining every thing into one equation,

   Inv(a0 0  + a1 1  + a2||2〉〉 + a3||3〉〉) =  (2m − a0) 0  + (2m − a1) 1   

+ (2m − a2)||2〉〉 + (2m − a3)||3〉〉. (8.3)

If we have two qubits, we have only four basis states. So  we’re searching 

for only one Good state out of four, which  isn’t very impressive. But Eqs. 

(8.2) and (8.3) generalize to more qubits in a straightforward way. If we have 

more qubits, we can search through a larger number of items, and the search 

takes longer. But the longer the search, the greater the improvement over a 

classical computer.

Grover’s algorithm is simply this:

• Start each qubit in state H 0  = + . The collective state of  these qubits 

 will be called ||S〉〉, for Sum, as explained  later.

• Apply Uf then Inv, and repeat this an optimal number of times. ( We’ll 

calculate this  later.)

•  Measure the qubits.  There’s an excellent chance that the result is the 

desired state, ||G〉〉.

Let’s start with a  simple example. Suppose we have two qubits, and the 

Good state ||G〉〉 = ||3〉〉. The qubits start in state + + =
1

2
0 + 1( )

1

2
0 + 1( ) 

=
1

2
0 0 + 0 1 + 1 0 + 1 1( ) =

1

2
0 + 1 + 2 + 3( ). If we measure the 

qubits right now,  there’s only a 25% chance of obtaining ||G〉〉.
Next, we apply Uf. According to Eq. (8.1), only ||G〉〉 is affected. So ||G〉〉, 

which in this case is ||3〉〉, is multiplied by −1. The state becomes 
1

2
0 + 1(  

+ 2 − 3 ).
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Next, we apply Inv. We first have to calculate m, the mean of the four 

probability amplitudes. The first three amplitudes are 1/2, and the last one is 

−1/2, so the mean is m = (1/2 + 1/2 + 1/2 − 1/2)/4 = 1/4.  After inversion about 

the mean, the amplitudes that  were 1/4 above m  will be reduced by 1/2, from 

1/2 to 0, and the amplitude that was 3/4 below m  will be raised by 3/2, from 

−1/2 to 1. Or using Eq. (8.3),

Inv 
1

2
0 +

1

2
1 +

1

2
2 − 1

2
3

⎛
⎝⎜

⎞
⎠⎟ = 2 × 1

4
− 1

2

⎛
⎝⎜

⎞
⎠⎟ 0

+ 2 × 1

4
− 1

2

⎛
⎝⎜

⎞
⎠⎟ 1 + 2 × 1

4
− 1

2

⎛
⎝⎜

⎞
⎠⎟ 2 + 2 × 1

4
− − 1

2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

3 = 3 .

In this example, a single application of Uf and Inv transforms the initial state 

exactly into ||G〉〉. This is considered a single query, or a single attempt to find 

the good state. A classical computer, on the other hand, has only a 25% chance 

of obtaining the correct result on its first guess.

If we have more qubits, we generally have to apply Uf and Inv more than 

once. To calculate the optimal number of iterations, we have to do a few pages 

of math. But it’s worth it  because we need this math (or at least the results of 

this math) to make Grover’s algorithm work.

Let’s first combine all the states that  aren’t ||G〉〉.  We’ll call this combina-

tion ||D〉〉 for the Disappointing states, the Dismal states, the Dreary states, the 

Decoy states. So in our example, we form the combination 0  + 1  + ||2〉〉. But 

this  isn’t normalized; we want  measurements of state ||D〉〉 to yield each of the 

three Disappointing states 1/3 of the time. So D =
1

3
0 + 1 + 2( ).

Notice that the qubits  were initialized (by H gates) to 
1

2
0 + 1 + 2 + 3( ), 

an equally weighted superposition of all basis states. We call this ||S〉〉 for 

 Superposition or Sum. If we have three qubits, the initial state is S = + + +  

=
1

2
0 + 1( )

1

2
0 + 1( )

1

2
0 + 1( ) =

1

2 2
0 + 1 + 2 + 3 + 4 + 5(

+ 6 + 7 ). Again, the initial state is an equally weighted superposition of all 

basis states. If we have n qubits, then putting them each in state +  creates an 

equally weighted superposition of all 2n basis states. This number of basis 

states is often called N = 2n.

Now we want to write ||S〉〉, the superposition of all basis states, in terms 

of ||G〉〉, the Good state, and ||D〉〉, the normalized superposition of Disappoint-

ing states. In our two- qubit example, since

S =
1

2
0 + 1 + 2 + 3( ),

G = 3 ,
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and

D〉 = 1

3
0 + 1 + 2( ),

we find that

 
S =

3

2
D +

1

2
G .

 
(8.4)

In this example, the number of basis states is N = 4. Eq. (8.4) is actually a 

special case of

 S =
N − 1

N
D +

1

N
G ,  (8.5)

where, in general,

 D =
1

N − 1
0 + 1 +…( ).  (8.6)

Equation (8.6) includes all the Disappointing states. If 0  or 1  is the Good 

state, it’s omitted from the sum.

In Eq. (8.5), notice that the square of the amplitude of ||D〉〉, plus the square 

of the amplitude of ||G〉〉, is 1. So ||D〉〉 and ||G〉〉 form a kind of a basis: If we do 

a  measurement that detects  either ||D〉〉 or ||G〉〉, we obtain one or the other, with 

a total probability of 1.

When the sum of two squares is 1, we may be reminded of a trigonomet-

ric identity,

 cos2θ + sin2θ = 1. (8.7)

Comparing Eqs. (8.5) and (8.7), we might as well define θ so that

 cosθ = N − 1

N
 (8.8a)

and

 sinθ = 1

N
.  (8.8b)

Why are we bringing in trigonometry?  We’re actually trying to make the prob-

lem easier, not harder. By defining the  angle θ,  we’ll be able to use geometry 

to simplify our algebra.  Here’s how.

We  will imagine that ||D〉〉, ||G〉〉, and ||S〉〉 are all arrows with a length of 1. 

Since ||D〉〉 and ||G〉〉 are mutually exclusive (||G〉〉 does not appear as any term in 

||D〉〉),  we’ll make ||D〉〉 and ||G〉〉 perpendicular; in a sense, no  matter how far we 

travel in the ||D〉〉 direction,  we’ll never move an inch in the ||G〉〉 direction. Let’s 

make ||D〉〉 horizontal, and ||G〉〉 vertical, shown in Fig. 8.1.

In Eq. (8.5), we see that ||S〉〉 has both a ||D〉〉 part and a ||G〉〉 part, and the 

||D〉〉 part is larger. This is represented graphically in Fig. 8.2. We see a right 
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triangle with a hypotenuse of length 1. Let’s see how the geometry of this tri-

angle is consistent with Eqs. (8.5) and (8.8). Suppose we want to walk from 

the origin, where the tails of the arrows meet, to the tip of ||S〉〉. But suppose 

we  can’t walk along the hypotenuse; we can only walk horizontally (in the 

||D〉〉 direction) or vertically (in the ||G〉〉 direction). How far do we have to walk 

in each direction? We can first walk in the ||D〉〉 direction, a distance equal to 

the base of the triangle. This is cosθ. But let’s keep track of the direction  we’ve 

walked, which is ||D〉〉. We think of ||D〉〉 as a direction, like East, not a number. 

Putting together the distance, cosθ, with the direction, ||D〉〉,  we’ll say  we’ve 

walked cosθ||D〉〉. This is 
N − 1

N
D , according to Eq. (8.8a). Next, to reach 

the tip of the ||S〉〉 arrow, we have to walk in the ||G〉〉 direction, a distance of 

|Gi

|Di

|Si

1

cos θ

sin θ
θ

Figure 8.2. The  angle θ, defined as the  angle between ||S〉〉 and ||D〉〉.

|Gi

|Di

Figure 8.1. A geometric repre sen ta tion of the Good state and the superposi-

tion of Disappointing states.
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sinθ. So we add to our walk sinθ||G〉〉, which is 
1

N
G , from Eq. (8.8b). So our 

total walk, from the origin to the tip of ||S〉〉, is N − 1

N
D +

1

N
G . This is 

the geometric interpretation of Eq. (8.5).

What’s the point of this geometry? In Grover’s algorithm, the initial state 

is ||S〉〉. The next state is Uf||S〉〉. We want to see where Uf||S〉〉 appears geometri-

cally. According to Eq. (8.1), Uf has no effect on ||D〉〉, but it multiplies ||G〉〉 by 

−1. So,

 U f S =
N − 1

N
U f D +

1

N
U f G =

N − 1

N
D − 1

N
G .  (8.9)

Geometrically, the effect of Uf is to replace our displacement in the +||G〉〉 di-

rection with an equal displacement in the - ||G〉〉 direction (Fig. 8.3).

We see that Uf is effectively a reflection about the ||D〉〉 line; we obtain the 

mirror image of what we started with. So far, it appears that Uf is  doing more 

harm than good:  We’re less aligned with ||G〉〉 than we  were initially. (Our goal 

to is align with ||G〉〉. If we align perfectly with ||G〉〉, our state is simply ||G〉〉, and 

we have a 100% chance of  measuring the Good state. In Grover’s algorithm, 

typically it’s impossible to align perfectly, so we just want to align with ||G〉〉 as 

well as we can. Though actually, it would be just as good to align with −||G〉〉 
 because −||G〉〉 and ||G〉〉 are physically indistinguishable.)

 After we apply Uf, the next step in Grover’s algorithm is to apply Inv, the 

inversion about the mean. I claim that inversion about the mean is a reflection 

|Gi

|Di

|Si

Uf |Si

θ

θ

Figure 8.3. Uf acting as a reflection about ||D〉〉.



86  Chapter 8

about the ||S〉〉 line. One way to show this is to examine the effect of Inv on 

||D〉〉. Recall that D =
1

N − 1
0 + 1 +…( ) + 0 G . All but one of the N basis 

states has an amplitude of 
1

N − 1
. One of the basis states, ||G〉〉, has an am-

plitude of 0. To calculate the mean amplitude, we sum the N − 1 amplitudes of 

1

N − 1
, and divide by N, the total number of basis states. So

m =

N − 1( )
1

N − 1

N
=

N − 1

N
,

using the rule that 
x

x
=

x

x

x

x
= x.

Next, a generalization of Eq. (8.3), to more than two qubits, is that

Inv(a0 0  + a1 1   + a2||2〉〉 + a3||3〉〉 +  . . .) = (2m − a0) 0  + (2m − a1) 1   

+ (2m − a2)||2〉〉 + (2m − a3)||3〉〉 + . . .

When Inv acts on ||D〉〉, we use the fact that 0 is the initial amplitude of 

||G〉〉, so the amplitude of ||G〉〉 becomes 2m −0 = 2m. On the other hand, 

1

N − 1
 is the initial amplitude of  every Disappointing state, so the ampli-

tude of  every Disappointing state becomes 2m − 1

N − 1
:

Inv D〉 = 2m − 1

N − 1

⎛

⎝⎜
⎞

⎠⎟
0 + 1 +…( ) + 2m | G〉

=
2 N − 1

N
− 1

N − 1

⎛

⎝⎜
⎞

⎠⎟
0 + 1 +…( ) +

2 N − 1

N
| G〉,

substituting m =
N −1

N
.

Let’s write the first part, 
2 N − 1

N
− 1

N − 1

⎛

⎝⎜
⎞

⎠⎟
0 + 1 +…( ), in terms  

of D =
1

N − 1
0 + 1 +…( ). The amplitude in the first expression is 

2 N − 1

N
− 1

N − 1
, and the amplitude in the second expression is 

1

N − 1
,  

so the first expression is 

2 N − 1

N
− 1

N − 1

⎛

⎝⎜
⎞

⎠⎟

1

N − 1

=
2 N − 1( )

N
− 1

⎛
⎝⎜

⎞
⎠⎟
=

N − 2

N
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times the second expression: 
2 N − 1

N
− 1

N − 1

⎛

⎝⎜
⎞

⎠⎟
0( + 1 +…) =

N − 2

N

⎛
⎝⎜

⎞
⎠⎟ D . 

Substituting this into the expression for Inv||D〉〉,

 

Inv D =
2 N −1

N
−

1

N −1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 0 + 1 +…( ) +

2 N −1

N
G

=
N − 2

N

⎛

⎝
⎜

⎞

⎠
⎟ D +

2 N −1

N
G .  (8.10)

Let’s confirm that Eq. (8.10) is normalized: The total probability of obtaining 

 either ||D〉〉 or ||G〉〉 should be 1. The probability of obtaining ||D〉〉 is N2 − 4N + 4

N2
. 

The probability of obtaining ||G〉〉 is 4 N − 1( )
N2

. If we add  these together, we 

indeed get 1.

I claim that Eq. (8.10) can be written cos(2θ)||D〉〉 + sin(2θ)||G〉〉, with θ de-

fined via Eq. (8.8). Combining cosθ = N − 1

N
 and sinθ = 1

N
 with the rule 

cos(2θ) = cos2θ − sin2θ, cos 2θ( ) =
N − 1

N
− 1

N
=

N − 2

N
, precisely the amplitude 

of  ||D〉〉 in Eq. (8.10). Likewise, using the rule sin(2θ) = 2sinθcosθ, 

sin 2θ( ) = 2
1

N

N − 1

N
=

2 N − 1

N
, the amplitude of ||G〉〉 in Eq. (8.10). So  

Inv||D〉〉 = cos(2θ)||D〉〉 + sin(2θ)||G〉〉 forms an  angle of 2θ with ||D〉〉 in Fig. 8.4, 

just as ||S〉〉 = cosθ||D〉〉 + sinθ||D〉〉 forms an  angle of θ with ||D〉〉.
This means, as I claimed, that the effect of Inv on ||D〉〉 is to reflect about 

the ||S〉〉 line: ||S〉〉 is like the mirror between the initial state (||D〉〉) and the final 

|Gi

|Di

|Si

Inv|Di

θ

θ

Figure 8.4. Inv acting as a reflection about ||S〉〉.



88  Chapter 8

state (Inv||D〉〉). In fact, Inv reflects any state about ||S〉〉. What we  really want to 

know, in Grover’s algorithm, is the orientation of Inv(Uf||S〉〉). Since the  angle 

between Uf||S〉〉 and ||S〉〉 is 2θ, Inv(Uf||S〉〉)  will be reflected about ||S〉〉, forming an 

 angle of 2θ in the opposite direction (Fig. 8.5).

So the overall effect of applying Uf and then Inv is to rotate 2θ counter-

clockwise. The goal is to rotate by this 2θ, the optimal number of times, to 

end up with an arrow as closely aligned with ||G〉〉 as pos si ble. The smaller θ is, 

the greater the number of iterations required. We want to iterate the optimal 

number of times, without  going too far: If we rotate too many times, we pass 

||G〉〉, our goal, and get increasingly far from it.

The  angle between ||D〉〉 and ||S〉〉 is θ. The  angle between ||D〉〉 and InvUf||S〉〉 
is 3θ. Suppose we apply Uf then Inv a second time. Let’s call the result 

 (InvUf)
2||S〉〉. The corresponding arrow is rotated 2θ farther away from ||D〉〉, 

for a total  angle of 5θ. So we see that if we apply both Uf and Inv a total of 

t times, the  angle between ||D〉〉 and (InvUf)
t||S〉〉 is (2t + 1)θ. We want this  angle 

to be as close to 90° as pos si ble, so (2t + 1)θ = 90°, or

 t =
90!

2θ
− 1

2
=

90!

2sin−1 1

N

− 1

2
,  (8.11)

using Eq. (8.8b) to solve for θ. Knowing that N = 2n, where n is the number of 

qubits in the cir cuits, we can just use a calculator or calculator app to solve 

for t in Eq. (8.11). (Replace 90° with π/2 radians if your calculator or calcu-

lator app is set to radians.) Most likely, t  will not be an integer. This means 

|Gi

|Di

|Si

InvUf|Si

Uf|Si

θ

θ

2θ

Figure 8.5. The effect of InvUf, a counterclockwise rotation of 2θ.
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that it’s impossible to create a state that aligns perfectly with ||G〉〉, but we round 

Eq. (8.11) to the nearest integer to obtain the optimal number of iterations of 

Uf then Inv.

For example, when we have two qubits, N = 22 = 4, and Eq. (8.11) gives 

t = [90°/(2 × 30°) − 1/2] = 1. This means that  after a single iteration, we create 

exactly the state ||G〉〉 and have a 100% chance of  measuring ||G〉〉. We saw this 

 earlier.

However, when we have three qubits, N = 23 = 8, and Eq. (8.11) gives 

t = 1.67, which we round to 2. So we need to apply Uf, then Inv, and then re-

peat the sequence a second time: Uf then Inv.

Let’s see how this works explic itly. Suppose we have three qubits, so 

N = 23 = 8, and

S =
1

8
0 + 1 + 2 + 3 + 4 + 5 + 6 + 7( ).

The amplitude of each of eight basis states must be 
1

8
 so that the probability 

of  measuring any one of them is 1/8 at this point. Suppose the Good state, 

which  we’re searching for, is ||G〉〉 = ||3〉〉. Grover’s algorithm  will take the state 

from ||S〉〉 to something close to ||G〉〉.
Since the optimal number of iterations is t = 2, we apply Uf then Inv, and 

then a second time apply Uf then Inv. The first application of Uf, to ||S〉〉, affects 

only ||G〉〉:

U f S =
1

8
0 + 1 + 2 − 3 + 4 + 5 + 6 + 7( ).

To apply inversion about the mean, we need to calculate the mean ampli-

tude m. Seven of the eight amplitudes are 
1

8
, and the other one is − 1

8
. So 

m =

7 × 1

8
− 1

8
8

=
3

4 8
. Inv converts each amplitude aj to 2m − aj, so

InvU f S = 2 × 3

4 8
− 1

8

⎛
⎝⎜

⎞
⎠⎟

0 + 1 + 2 + 4 + 5 + 6 + 7( )

+ 2 × 3

4 8
+

1

8

⎛
⎝⎜

⎞
⎠⎟

3

=
1

2 8
0 + 1 + 2 + 4 + 5 + 6 + 7( ) +

5

2 8
3 .

This completes one iteration, but  we’re not done. The probability of obtain-

ing the Good result so far is 
5

2 8

⎛
⎝⎜

⎞
⎠⎟

2

=
25

32
. That’s not bad, but it  will improve 

 after the second iteration.
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Applying Uf the second time gives

U fInvU f S =
1

2 8
0 + 1 + 2 + 4 + 5 + 6 + 7( ) −

5

2 8
3 .

Now the final step is the second application of Inv. To find the mean ampli-

tude m, we see that seven of the amplitudes are 
1

2 8
, and one is − 5

2 8
. So 

the mean is m =

7 × 1

2 8
− 5

2 8
8

=
1

8 8
. Then changing each amplitude aj to 

2m − aj:

InvU fInvU f S = 2 × 1

8 8
− 1

2 8

⎛
⎝⎜

⎞
⎠⎟

0 + 1 + 2 + 4(

+ 5 + 6 + 7 ) + 2 × 1

8 8
+

5

2 8

⎛
⎝⎜

⎞
⎠⎟

3

= − 1

4 8
0 + 1 + 2 + 4 + 5 + 6 + 7( ) +

11

4 8
3 .

And  we’re done! The probability of obtaining the Good result is 121/128, 

which is as high as it’s  going to get. The minus sign in front of the Disap-

pointing states indicates that  we’ve rotated a  little too far, counterclockwise 

of the vertical ||G〉〉 arrow. If we iterate any more, the probability of ||G〉〉  will 

decline.

 We’re ready to tackle the next question, which is how to build the Uf 

and Inv gates. Let’s start with Inv. Inv is inversion about the mean. Let’s first 

try something a  little simpler: inversion about ||111〉〉. This means that ||111〉〉 is 
unaffected, whereas  every other computational basis state is multiplied by 

−1. So:

||111〉〉 → ||111〉〉

and

||j〉〉 → −||j〉〉 for j other than 111.

We know that if we multiply  every basis state by a global phase  factor, 

like −1, nothing changes physically; the system is unaltered by this mathemat-

ical tweak. So, for  later  convenience,  we’ll multiply by −1 the definition of in-

version about ||111〉〉:

||111〉〉 → −||111〉〉

and

||j〉〉 → ||j〉〉 for j other than 111.

This transformation is physically equivalent to our original definition of in-

version about ||111〉〉.



Grover’s Search  91

Now, it turns out that  there’s a quantum gate that multiplies ||111〉〉 by −1 

without affecting any other basis state: the doubly controlled Z gate:

Which two qubits are the controls, and which one is the target? In fact, 

we can imagine that any one of the three qubits is the target, to which we 

apply the Z gate. To make this flexibility explicit, we place an identical mark 

on each qubit.

Recall that Z has no effect on 0 , but it multiplies 1  by −1. So in order 

to get that  factor of −1, the target must be 1 . But since  there are two con-

trols, the controls must be 1  too, or  else the Z gate is not applied to the tar-

get. Putting this together, we see that all three qubits must be 1  to get the 

 factor of −1. In other words, the doubly controlled Z gate multiplies ||111〉〉 by 

−1, without affecting any other basis state. So the doubly controlled Z gate is 

inversion about ||111〉〉.
If we want to multiply ||1111〉〉 by −1, we use a triply controlled Z, which 

looks like four dots connected by a vertical line. In general, to multiply 

||111 . . . .〉〉 by −1, we use a “multiply controlled Z” with a dot on  every qubit. 

(The last syllable of “multiply” in “multiply controlled” is pronounced like 

the last syllable in “doubly” and “triply.”)

Our next complication is that the doubly controlled Z is not provided by 

IBM Quantum, so we have to construct it out of the gates that are available. 

We can prove that Fig. 8.6 functions as a doubly controlled Z. We need to 

show that this multiplies ||111〉〉 by −1, without affecting any other basis state. 

Clearly, the top two qubits must be 1  to apply the NOT to the bottom qubit. 

If the top two qubits are not both 1 , the NOT is not applied, and the two H 

gates cancel each other out. But why must the bottom qubit be 1  to get the 

 factor of −1?

Figure 8.6. Construction of a doubly controlled Z, created using IBM 

Quantum.
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Suppose the bottom qubit is 0 . The first H changes it to 
1

2
0 + 1( ) = + .

If the top qubits are ||11〉〉 so that the NOT is applied, the bottom qubit 

changes to 
1

2
1 + 0( ), which actually  isn’t a change; it’s still + . So the 

final H changes +  back to 0 : The initial state is restored.

But what if all three qubits are 1 ? The first H changes the bottom qubit 

to 
1

2
0 − 1( ) = − . The NOT changes this to 

1

2
1 − 0( ) = − − , which is 

−1 times what it used to be. The final H changes the bottom qubit to − 1 : 

 We’ve acquired a  factor of −1, only for the state ||111〉〉.
Next, suppose we want to multiply some other state by −1. Suppose, for 

example, we want to multiply only ||011〉〉 by −1. In fact, this transformation is 

exactly Uf for our example with ||G〉〉 = ||3〉〉 = ||011〉〉. To multiply ||011〉〉 by −1, we 

start with the doubly controlled Z, which multiplies ||111〉〉 by −1. We simply 

put a NOT on the qubit with a 0 , before and  after the doubly controlled Z 

(Fig. 8.7).

Figure 8.8. A cir cuit to multiply ||000〉〉 by −1, created using the Quantikz 

LaTeX package.

H H

H H

H H

Figure 8.9. Inversion about the mean, created using the Quantikz LaTeX 

package.

Figure 8.7. A cir cuit to multiply ||011〉〉 by −1, created using the Quantikz 

LaTeX package.
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If the state is ||011〉〉, the first NOT makes this ||111〉〉, then the doubly con-

trolled Z makes this −||111〉〉, and the then final NOT makes this −||011〉〉. No 

other computational basis state is affected (the two NOT gates cancel each 

other out, without any  factor of −1).

If we want to multiply ||000〉〉 by −1, we need NOTs on all three qubits 

(Fig. 8.8). This multiplies only ||000〉〉 by −1. Or, neglecting a global phase  factor 

of −1, this multiplies every thing but ||000〉〉 by −1: inversion about ||000〉〉.
 We’ve had some peripheral adventures, but  we’re ready to complete our 

quest, to construct Inv, inversion about the mean. We know that inversion 

about the mean is a reflection about ||S〉〉, or, let’s say, an inversion about ||S〉〉. 
And we know that we can create ||S〉〉 by applying H to  every qubit, initially in 

state 0 . So an H applied to  every qubit takes us from ||000〉〉, if we have three 

qubits, to ||S〉〉. Similarly, an H applied to  every qubit takes us from ||S〉〉 back to 

||000〉〉.
Let me be loose with the math  here, but my conclusions can be proven 

rigorously. To invert about the mean, we start with inversion about ||000〉〉, 
which we know how to construct (Fig. 8.8). Then, we apply H to  every qubit 

before and  after inversion about ||000〉〉, shown in Fig. 8.9.

The first column of H’s converts ||S〉〉, which we want to invert about, to 

||000〉〉. Effectively,  we’re mapping ||S〉〉 onto ||000〉〉. Then we perform the inver-

sion about ||000〉〉. Then the final column of H’s maps ||000〉〉 back to ||S〉〉. In ef-

fect,  we’ve inverted about ||S〉〉, by mapping it in and out of a realm where it’s 

easier to perform inversions.

The inversion about the mean generalizes to any number of qubits, in a 

straightforward way. Simply add as many identical lines as necessary to the 

cir cuit.

 We’ve already seen how to construct Uf: To multiply ||G〉〉 by −1, without 

affecting other basis states, start with a multiply controlled Z, and put NOT 

gates before and  after it, on  every qubit with 0  in ||G〉〉. So  we’re ready to 

construct our cir cuits to implement Grover’s algorithm.

“But wait!” the astute reader objects. “To construct Uf, we need to know 

what ||G〉〉 is, and the  whole point of Grover’s algorithm is to determine ||G〉〉. 
So if  we’re able to construct Uf,  there’s no point implementing Grover’s search 

algorithm since we already know what  we’re searching for.”

The astute reader is absolutely correct. As a warmup, we  will design our 

cir cuits assuming that we already know what ||G〉〉 is. Then we  will see how to 

q[0]

q[1]

c2

H

H

H

H

H

H

0 1

Figure 8.10. Grover’s algorithm for ||G〉〉 = ||3〉〉, created using IBM Quantum.
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design a cir cuit that effectively searches a quantum database, without being 

preprogrammed with the state number  we’re searching for.

Figure 8.10 is Grover’s search algorithm with ||G〉〉 = ||3〉〉 = ||11〉〉. The initial H 

gates convert 00 to ++ = S =
1

2
0 + 1 + 2 + 3( ),  the equally weighted 

superposition of all basis states for two qubits. The gate between the dashed lines 

is a controlled Z, which multiplies ||11〉〉 = ||3〉〉 by −1 without affecting any other 

basis states. This is Uf for ||G〉〉 = ||3〉〉 = ||11〉〉. The remaining gates are Inv, inversion 

about the mean. The  measured result is expected to be exactly ||G〉〉 in this case.

To search instead for ||G〉〉 = ||2〉〉 = ||10〉〉, the only part of the cir cuit that 

changes is Uf. We want to multiply ||10〉〉 by −1, so we need to sandwich the 

controlled Z between NOT gates on the top qubit, which corresponds with 

the 0 in ||10〉〉, shown in Fig. 8.11.

So far,  we’ve been searching for ||G〉〉 in a space of only four pos si ble val-

ues: 0, 1, 2, and 3. If we want to search a larger space, we need a larger cir-

cuit. Not only do we need more qubits, but we also need to repeat Uf and Inv 

according to Eq. (8.11).  We’ve seen that if we have three qubits, we need to 

repeat Uf and Inv twice. So Fig. 8.12 is Grover’s algorithm for ||G〉〉 = ||7〉〉 = ||111〉〉.

The initial H gates create the state S =
1

8
0 + 1 + 2 + 3 + 4 + 5 +(

6 + 7 ). If the qubits  were  measured at this point,  there would be only a 1/8 

chance of obtaining the desired result, ||7〉〉. Next,  there is a Toffoli with H gates 

on  either side of the target. This functions as a doubly controlled Z, which is 

our Uf that multiplies ||111〉〉 by −1. Next, we have inversion about the mean. 

This completes a single iteration within Grover’s algorithm. As in the exam-

ple  earlier with ||G〉〉 = ||011〉〉 = ||3〉〉, the probability of  measuring ||G〉〉 at this 

point is 25/32. We improve this by iterating a second time. We repeat Uf and 

q[0]

q[1]

c2

H

H

H

H

H

H

0 1

Figure 8.11. Grover’s algorithm for ||G〉〉 = ||2〉〉, created using IBM Quantum.

q[0]

q[1]

q[2]

c3

H

H

H H H

H

H

H H H

H

H

H H H

H

H

H H H

H

H

H

0 1 2

Figure 8.12. Grover’s algorithm for ||G〉〉 = ||7〉〉, created using IBM Quantum.
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Inv. At the end of the cir cuit, the probability of  measuring ||G〉〉 is 121/128, 

over 94%.

In  every cir cuit  earlier, we constructed Uf using our knowledge of what 

||G〉〉 is. However, the  whole purpose of Grover’s algorithm is to search for an 

unknown ||G〉〉. Let’s see how to construct Uf if we  don’t already know ||G〉〉.
Suppose we have a  simple phone book, with only four names ( Table 8.3). 

Following a short- lived local custom, every one in this small community is named 

 after a number. And since the community is so small, each phone number is only 

one digit. The  people named 2 and 3 have the same phone number, so apparently 

they are sharing a phone, to save money. Very thrifty  people, 2 and 3.

Now, if we want to know somebody’s phone number, it’s easy to look up 

the name,  because the names are in numerical order. However, if we know a 

phone number, and we want to know the corresponding name, the task is 

harder. The phone numbers are not in any par tic u lar order in the phone book. 

If the phone book had a million entries, we’d have to search through half a 

million entries, on average, before finding the phone number we sought.

Suppose the desired phone number is 2. According to the phone book, 

the Good name (which is the state number) is then ||G〉〉 = 0 . But we want to 

pretend that we  don’t already know this. So we need a Uf that looks at each 

name and multiplies the state by −1 only if the corresponding phone number 

is 2. Uf  will incorporate a quantum database that stores all the information in 

the phone book.

To create the quantum database, we first need to convert the phone book 

to binary, and let’s write the bits as qubits while  we’re at it ( Table 8.4). We see 

that we need two qubits for the name, and two qubits for the phone number. 

A group of qubits is sometimes called a register, so  we’ll have a name register, 

and a phone number register, two qubits each:

name[0]

name[1]

phoneNumber[0]

phoneNumber[1]

If ||name〉〉 = ||01〉〉 = 0 1 , then the qubit on the right (the 1  in this exam-

ple) is called ||name[0]〉〉 and is placed on the top of the cir cuit. The qubit on 

 Table 8.3

Name Phone number

0 2

1 1

2 3

3 3
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the left is called ||name[1]〉〉. So ||name〉〉 = ||name[1]〉〉||name[0]〉〉. Similarly, 

||phoneNumber〉〉 = ||phoneNumber[1]〉〉||phoneNumber[0]〉〉.
According to the phone book, when ||name〉〉 = 0 0 , ||phoneNumber〉〉 = 1 0 , 

and so on. We need to create a quantum database to achieve this. Let’s first 

look at phoneNumber[1]. This is the left qubit of the phone number. According 

to the phone book, the left qubit is 1   unless ||name〉〉 is 0 1 . Let’s see how 

Fig. 8.13 makes ||phoneNumber[1]〉〉 = 1  except when ||name〉〉 = 0 1 .

phoneNumber[0] and phoneNumber[1] start out in the state 0  by de-

fault. The NOT on ||phoneNumber[1]〉〉 makes it 1 . We need to turn it back 

to 0  when ||name〉〉 = 0 1 . If ||name〉〉 = 0 1 , the NOT gate on ||name[1]〉〉 
makes the name register 1 1 . Then  these two 1  qubits are the controls on 

the Toffoli, which activates the NOT on ||phoneNumber[1]〉〉.  We’ll apply 

another NOT to ||name[1]〉〉 to restore its original state in a moment.

Now  we’re ready to set the value of ||phoneNumber[0]〉〉. According to the 

phone book, this is 1  except when ||name〉〉 = 0 0 . Our complete database is 

achieved with Fig. 8.14.

The NOT on ||phoneNumber[0]〉〉 makes it 1 . We have to turn it back to 

0  if ||name〉〉 = 0 0 . This is achieved by the Toffoli targeting ||phoneNumber[0]〉〉. 
Both qubits of ||name〉〉 have had a NOT applied at this point, converting 0 0  

name[0]

name[1]

phoneNumber[0]

phoneNumber[1]

Figure 8.13. Setting the value of phoneNumber[1] for a quantum phone 

book, created using IBM Quantum.

 Table 8.4

||name〉〉 ||phoneNumber〉〉

0 0 1 0

0 1 0 1

1 0 1 1

1 1 1 1
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to 1 1 , which activates the Toffoli. The final two NOTs restore both  qubits of 

||name〉〉 to their original states. The effect of Fig. 8.14 on ||phoneNumber〉〉||name〉〉 
is to convert ||phoneNumber〉〉 from 0 0  to the phone number associated with 

||name〉〉. (||phoneNumber〉〉 starts out as 0 0 , but ||name〉〉 can start as any 

value. In Grover’s algorithm, the name register  will start as a superposition of 

all basis states.)

Our cir cuit so far is a quantum database, the quantum equivalent of the 

phone book. It’s completely  independent of which phone number we may 

choose to search for. If  we’re searching for the phone number ||2〉〉 = 1 0 , we 

need Uf to multiply ||name〉〉 by −1 when ||phoneNumber〉〉 = 1 0 . A schematic 

diagram of the cir cuit we want is shown in Fig. 8.15. The open circle on 

||phoneNumber[0]〉〉 indicates a control that requires a 0  instead of a 1 . So 

the  factor of −1 is applied to the target only when ||phoneNumber[1]〉〉 = 1  and 

||phoneNumber[0]〉〉 = 0 .

Now, how can we multiply an unspecified state by −1? For example, what 

gate, or sequence of gates, multiplies α 0  + β 1  by −1? Z multiplies 1  by −1. 

To multiply 0  by −1, we can first apply a NOT, to make it 1 , then apply Z 

to multiply by −1, and then apply another NOT to recover the original 0 . So 

the complete sequence to multiply any state by −1 is Z (to apply the −1 to 1 ) 

and then (to apply the −1 to 0 ) NOT then Z then NOT.

name[0]

name[1]

phoneNumber[0]

phoneNumber[1]

Figure 8.14. A quantum phone book, created using IBM Quantum.

–1

phoneNumber[0]

phoneNumber[1]

Figure 8.15. The oracle for a desired phone number of 10, created using the 

Quantikz LaTeX package.
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Let’s do this explic itly. Start with

α 0  + β 1 .

Apply Z:

α 0  − β 1 .

Apply X:

α 1  − β 0 .

Apply Z:

−α 1  − β 0 .

Apply X:

−α 0  − β 1 ,

which is the original state multiplied by −1. So the cir cuit we need is Fig. 8.16, 

where the top qubit can be  either of the qubits in ||name〉〉.
IBM Quantum  doesn’t allow for an open- circle control that requires 0 , 

so we simply apply a NOT before and  after the controls on that qubit 

(Fig. 8.17). The first NOT turns the required 0  to a 1 , which can activate 

the controls. The final NOT restores the qubit to its original state.

We saw that a doubly controlled Z is created by a Toffoli and two Hadam-

ards, so the achievable cir cuit to multiply ||name〉〉 by −1 when ||phoneNumber〉〉 =  

1 0  is the cir cuit in Fig. 8.18. I put the target on the top qubit of ||name〉〉, but 

the lower qubit would work just as well.

 We’ve worked out two ele ments of Uf: the quantum database creating 

||phoneNumber〉〉 states corresponding to ||name〉〉 states, and the multiplication 

Z Z

Figure 8.16. Construction of the desired oracle, created using the Quantikz 

LaTeX package.

Z Z

Figure 8.17. The same cir cuit as Fig. 8.16, without open- circle controls, 

created using the Quantikz LaTeX package.
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by −1 when ||phoneNumber〉〉 is ||2〉〉. The final ele ment of Uf is to restore the 

||phoneNumber〉〉 qubits to 0 0  to remove entanglement between the ||name〉〉 
register and the ||phoneNumber〉〉 register. This is sometimes called uncomput-

ing and is an essential step. The inversion about the mean  will not work prop-

erly if the two registers are entangled. To restore the ||phoneNumber〉〉 register 

to 0 0 , the gates that created the quantum database are applied in the oppo-

site order (Fig. 8.19).

Now  we’re ready for the complete Grover’s algorithm cir cuit to search 

the quantum phone book for the number ||2〉〉 = 1 0 , and return the ||name〉〉 
corresponding to that phone number. The desired ||name〉〉, according to the 

phone book, is 0 0 . That is the expected output at the end of the cir cuit. 

Figure 8.20 shows the complete cir cuit.

Figure 8.18. The same cir cuit as Fig. 8.17, constructing the doubly con-

trolled Z gates as shown in Fig. 8.6, created using IBM Quantum.

Figure 8.19. The inverse the of the phone book operation shown in 

Fig. 8.14, created using IBM Quantum.

name[0]

name[1]

phoneNumber[0]

phoneNumber[1]

c2

H

H

H H H H H

H

H

H

0 1

Figure 8.20. Grover’s algorithm applied to the quantum phone book, 

created using IBM Quantum.
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The initial H gates create ||S〉〉, the superposition of all basis states in the 

||name〉〉 register.  We’re searching for a par tic u lar ||name〉〉, to match the phone 

number ||10〉〉. The phone number register is auxiliary and is not included in 

||S〉〉.  After the first dashed line, we have the first part of Uf: the quantum data-

base that assigns a ||phoneNumber〉〉 state to go with each ||name〉〉 state. Now 

the two registers are entangled: We have a superposition of four terms of 

||phoneNumber〉〉||name〉〉, one for each of the four ||name〉〉 values. (The NOT 

on ||phoneNumber[0]〉〉 may be placed on  either side of the first Toffoli gate 

 because this Toffoli gate does not interact with this qubit.)

 After the second dashed line, we have the gates that multiply ||name〉〉 by 

−1 only when ||phoneNumber〉〉 is 1 0 . This is the part of the cir cuit that we 

would change if we wanted to look up a dif fer ent phone number.

 After the third dashed line, we uncompute the ||phoneNumber〉〉 register 

to disentangle it from the ||name> register. But the −1 multiplying the Good 

||name〉〉 remains.  After the final dashed line, we have inversion about the mean. 

The final  measurement result is theoretically expected to be 0 0 , the ||name〉〉 
associated with the ||phoneNumber〉〉 = 1 0 . We did not assume this result, 

the Good ||name〉〉, anywhere in the cir cuit.

Let’s make a final application of Grover’s search algorithm. This algo-

rithm can be applied to any prob lem that can be solved through trial and 

error. In many prob lems, it’s easier to test if a solution is correct than it is to 

come up with the solution yourself. For example, it may be hard to solve the 

equation (x + 1)x − 1 = x2 + 7. But if I asked you to test  whether x = 3 was a 

solution, you’d be able to quickly confirm that it was.  We’re  going to use 

Grover’s algorithm to solve the equation A + 1 = 3.

Let’s write this in binary: A + 01 = 11. Since the sum is two bits, it’s clear 

that A is no more than two bits.  We’ve already seen a cir cuit that sums two 

2- bit numbers, A1A0 and B1B0 (Fig. 8.21).

Since we want to calculate A + 01, let’s assign A = A1A0 and B1B0 = 01. 

Since the desired sum is ||S1S0〉〉 = ||11〉〉, we  don’t need the final carry, ||C2〉〉. We 

can drop ||C2〉〉 and the gates that affect it (Fig. 8.22).

I want ||A0〉〉 and ||A1〉〉 to be next to each other, to form the ||A〉〉 register. 

Grover’s algorithm  will search for the Good ||A〉〉 state that solves the equa-

tion. I’ll put ||B0〉〉 and ||B1〉〉 next to each other as well.  After this rearrangement, 

the cir cuit becomes Fig. 8.23.

To complete Uf, we need to multiply ||A〉〉 by −1 when the sum is ||11〉〉. Mul-

tiplying any state by −1 requires Z, then NOT, then Z, then NOT.  We’ll put 

all  these gates on ||A0〉〉, and control all of  these gates with the sum bits (the 

controls have to both be 1  for a sum of ||11〉〉). Then we have to uncompute 

the ||B〉〉 and ||C〉〉 registers, as well as ||A1〉〉. The complete cir cuit is shown in 

Fig. 8.24 (replacing capital A and B with lowercase letters as required by IBM 

Quantum).

The initial H gates create ||S〉〉 for the ||A〉〉 register. The NOT on ||B[0]〉〉 ini-

tializes ||B〉〉 to 0 1 , the number that  we’re adding to ||A〉〉.  After the first 



|A0〉

|B0〉

|A0〉

|S0〉

|S1〉

|C1〉

|C2

|C1  ⊕ A1〉

|0〉

|A1〉

|B1〉

|0 〉〉

Figure 8.21. A cir cuit that sums two two- bit numbers, created using the 

Quantikz LaTeX package.

|A0〉

|B0〉

|A0〉

|S0〉

|S1

|C1〉

|C1  ⊕ A1〉

|0〉

|A1〉

|B1 〉〉

Figure 8.22. A cir cuit that sums two two- bit numbers without generating a 

final carry bit, created using the Quantikz LaTeX package.

|A0〉

|A1〉

|A0〉

|C1 ⊕A1〉

|C1〉

|S0〉

|S1〉

|B0〉

|B1〉

|0〉

Figure 8.23. A rearrangement of Fig. 8.22, created using the Quantikz 

LaTeX package.
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dashed line, we have the quantum adder. The sum is stored in the ||B〉〉 register. 

 After the second dashed line, we multiply ||A[0]〉〉 by −1 when the sum is 1 1 . 

 Here  we’re marking the sum that we seek.  After the third dashed line, we apply 

the inverse of the quantum adder to disentangle ||A〉〉 from the auxiliary qubits 

(||B〉〉 and the carry qubit). Last, we have inversion about the mean.

The  measured output is expected to be A = 10, the solution to A + 01 = 11. 

Nowhere in the cir cuit did we assume this solution. To instead solve A + 00 = 11, 

or A + 10 = 11, or A + 11 = 11, we simply change the initialization of the ||B〉〉 
register, to the left of the first dashed line.

Figure 8.24. Grover’s algorithm to solve A + 1 = 3, created using IBM 

Quantum.

a[0]

a[1]

b[0]

b[1]

carry[0]

c2

H

H

H H H H H

H

H

H

0 1
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QFT and IQFT . . .  WTF?

I
n the next three chapters,  we’re ramping up to Shor’s factoring algorithm, 

a potential threat to classical cryptography and network security. The far-

thest Shor is almost in sight. We have only to navigate the barrier islands. 

Watch out for sirens, sorceresses, and cyclopes.

Shor’s algorithm makes use of something called the quantum Fourier 

transform (QFT). A Fourier transform provides information about the fre-

quencies that make up a wave. For example, the Fourier transform of the 

sound wave of a chord indicates the frequencies of the notes in the chord. Fre-

quency is the reciprocal of the period, the amount of time it takes for a full 

wavelength to pass by a fixed point. More generally, period can be defined as 

the size of a repeating pattern. For example, the sequence 10001000 has a pe-

riod of 4  because the repeating pattern, 1000, has a size of 4 digits.

The quantum Fourier transform provides information about the period 

of amplitudes in a multiqubit state. For example, the two- qubit state 

1

2
00 + 10( ) =

1

2
0 + 2( ) =

1

2
0 + 0 1 +

1

2
2 +0 3  has a period of 

2: the periodic sequence of amplitudes is 
1

2
, 0,

1

2
, 0, and the pattern that 

repeats 
1

2
,  0

⎛
⎝⎜

⎞
⎠⎟
 has a size of 2 terms.

The quantum Fourier transform involves some imaginary numbers. We 

recall that i, the square root of −1, behaves just like any other algebraic sym-

bol. It has the special property i2 = −1.

 We’re  going to see i in exponents, such as eiπ. What can this possibly 

mean?  There’s an equation called Euler’s formula, which states that for some 

real number θ,

 eiθ = cosθ + isinθ. (9.1a)

 We’re  going to use this formula for just eight special values of θ, so I’ll list 

them all. With θ in radians:
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 ei0 = cos0 +isin0 = 1 (9.1b)

 eiπ /4 = cos(π /4) + isin(π /4) =
1+ i

2
 (9.1c)

 eiπ/2 = cos(π/2) +isin(π/2) = i (9.1d)

 e3iπ /4 = cos(3π /4) + isin(3π /4) =
− 1+ i

2
 (9.1e)

 eiπ = cosπ +isinπ = −1 (9.1f)

 e5iπ /4 = cos(5π /4) + isin(5π /4) = − 1+ i

2
 (9.1g)

 e3iπ/2 = cos(3π/2) +isin(3π/2) = −i (9.1h)

 e7iπ /4 = cos(7π /4) + isin(7π /4) =
1− i

2
 (9.1i)

You may recall that sine and cosine are periodic functions with a period of 2π, 

which means that sin(θ + 2π) = sinθ and cos(θ + 2π) = cosθ. So it’s also true that

 ei(θ + 2π) = eiθ. (9.1j)

 We’ve seen that if we have n qubits, we have N = 2n basis states. For ex-

ample, if we have three qubits, we have eight basis states, ||000〉〉 through ||111〉〉, 
or 0  through ||7〉〉 in base ten. The most general equation for the QFT of a 

basis state ||j〉〉 is the definition

 QFT j =
1

N
e

2πij
0

N 0 + e
2πij

1

N 1 +…+ e
2πij

N −1

N N −1( )  (9.2a)

if N>2, or just

 QFT j =
1

2
e
2πij

0

2 0 + e
2πij

1

2 1
⎛

⎝
⎜

⎞

⎠
⎟  (9.2b)

if N = 2. Let’s start with one qubit, and work up to three qubits.

If we have only n = 1 qubit, we have N = 21 = 2 basis states, 0  and 1 . So 

the two pos si ble values of j in Eq. (9.2b) are 0 and 1. Specifically, for j = 0,

 QFT 0 =
1

2
e0 0 + e0 1( ) =

1

2
0 + 1( )  (9.3a)

 because e0 = 1. And for j = 1,

QFT 1 =
1

2
e
2πi

0

2 0 + e
2πi

1

2 1
⎛
⎝⎜

⎞
⎠⎟
=

1

2
e0 0 + eπi 1( ) =

1

2
0 − 1( )  (9.3b)

using Eq. (9.1f) to simplify eπi to −1.

Does Eq. (9.3) remind us of anything? 0  is turned into 
1

2
0 + 1( ), 

and 1  is turned into 
1

2
0 − 1( ). We know the gate the does this: the 
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Hadamard! So the single- qubit QFT is simply H. Apparently,  we’ve been  doing 

quantum Fourier transforms all along. The QFT of a single qubit, however, 

does not clearly show the utility of QFT, so let’s move on to two qubits.

For n = 2 qubits, we have N = 22 = 4 basis states, ||00〉〉 = 0 , ||01〉〉 = 1 ,  

||10〉〉 = ||2〉〉, and ||11〉〉 = ||3〉〉. Equation (9.2a) has a sum of four terms,

QFT j =
1

2
e
2πij

0

4 0 + e
2πij

1

4 1 + e
2πij

2

4 2 + e
2πij

3

4 3
⎛
⎝⎜

⎞
⎠⎟
.

Now we can explic itly write out the QFT of the four basis states, using 

Eq. (9.1) as necessary to simplify complex exponentials:

 QFT 0 =
1

2
e0 0 + e0 1 + e0 2 + e0 3( ) =

1

2
0 + 1 + 2 + 3( ) (9.4a)

 

QFT 1 =
1

2
e
2πi

0

4 0 + e
2πi

1

4 1 + e
2πi

2

4 2 + e
2πi

3

4 3
⎛
⎝⎜

⎞
⎠⎟

=
1

2
0 + i 1 − 2 − i 3( )

 
(9.4b)

 

QFT 2 =
1

2
e
2πi2

0

4 0 + e
2πi2

1

4 1 + e
2πi2

2

4 2 + e
2πi2

3

4 3
⎛
⎝⎜

⎞
⎠⎟

=
1

2
0 − 1 + 2 − 3( )

 (9.4c)

 

QFT 3 =
1

2
e
2πi3

0

4 0 + e
2πi3

1

4 1 + e
2πi3

2

4 2 + e
2πi3

3

4 3
⎛
⎝⎜

⎞
⎠⎟

=
1

2
0 − i 1 − 2 + i 3( )

 
(9.4c)

What’s the point of all this math? Eq. (9.4) gives the QFT of basis 

states, but we can apply the QFT to superpositions, such as 
1

2
0 + 2( ) =

1

2
0 +0 1 +

1

2
2 +0 3 . As noted  earlier, this two- qubit state has a pe-

riod of 2. The QFT of this state effectively indicates the period. It would be 

nice if the QFT just spat out the number 2. However, the QFT of a two- qubit 

state is another two- qubit state; it’s not a  simple number like 2. The  process 

for extracting the period from the QFT is this:

• We have a state of n qubits (so the number of basis states is N = 2n).

• We want to know the period r of the amplitudes of the state.

• We determine the QFT of the state.

• In the result, the amplitudes of basis states ||k〉〉 are nonzero only for 

k that are integer multiples of N/r. Knowing N, r can be extracted.
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Let’s apply this  process to determine the period r of 
1

2
0 + 2( ), a two- 

qubit state. We determine the QFT of this state:

QFT
1

2
0 + 2( ) =

1

2
QFT 0 +QFT 2( ).

Now we just plug in Eqs. (9.4a) and (9.4c):

1

2
QFT 0 +QFT 2( ) =

1

2

1

2
0 + 1 + 2 + 3( )⎡

⎣⎢

+
1

2
0 − 1 + 2 − 3( )⎤

⎦⎥

=
1

2
0〉 + 2〉( ).

 We’ve just found that 
1

2
0 + 2( ) is its own QFT.

Next, we determine r from this result. We see that the result has nonzero 

amplitudes only for ||k〉〉 where k is an integer multiple of 2. And since k is an 

integer multiple of 2, we set this 2 equal to N/r; this is the rule for determin-

ing period r. And since N = 22 = 4  because we have two qubits, 2 = 4/r, so 

r = 4/2 = 2. This is the correct result.

Now  we’ll move on to the QFT of three qubits.  There are now N = 23 = 8 

basis states, ||000〉〉 = 0  through ||111〉〉 = ||7〉〉. Equation (9.2a) now has eight 

terms in the sum:

QFT j =
1

2 2
e
2πij

0

8 0 + e
2πij

1

8 1 + e
2πij

2

8 2 + e
2πij

3

8 3 + e
2πij

4

8 4(

+ e
2πij

5

8 5 + e
2πij

6

8 6 + e
2πij

7

8 7 ).
And since  there are eight basis states ||j〉〉, we have to work out the details for 

eight separate values of j. Using Eq. (9.1j) as necessary to keep the θ in eiθ 

below 2π,

  

QFT 0 =
1

2 2
e0 0 + e0 1 + e0 2 + e0 3 + e0 4 + e0 5 + e0 6 + e0 7( )

=
1

2 2
0 + 1 + 2 + 3 + 4 + 5 + 6 + 7( )

 
(9.5a)

QFT 1 =
1

2 2
e
2πi

0

8 0 + e
2πi

1

8 1 + e
2πi

2

8 2 + e
2πi

3

8 3 + e
2πi

4

8 4(

+ e
2πi

5

8 5 + e
2πi

6

8 6 + e
2πi

7

8 7 )
=

1

2 2
0 + eπi/4 1 + eπi/2 2 + e3πi/4 3 + eπi 4(

+ e5πi/4 5 + e3πi/2 6 + e7πi/4 7 )  (9.5b)
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QFT 2 =
1

2 2
e

2πi2
0

8 0 + e
2πi2

1

8 1 + e
2πi2

2

8 2 + e
2πi2

3

8 3 + e
2πi2

4

8 4(

+ e
2πi2

5

8 5 + e
2πi2

6

8 6 + e
2πi2

7

8 7 )
=

1

2 2
0 + eπi/2 1 + eπi 2 + e3πi/2 3 + 4(

+ eπi/2 5 + eπi 6 + e3πi/2 7 )
 

(9.5c)

 

QFT 3 =
1

2 2
e
2πi3

0

8 0 + e
2πi3

1

8 1 + e
2πi3

2

8 2 + e
2πi3

3

8 3 + e
2πi3

4

8 4(

+ e
2πi3

5

8 5 + e
2πi3

6

8 6 + e
2πi3

7

8 7 )
=

1

2 2
0 + e3πi/4 1 + e3πi/2 2 + eπi/4 3 + eπi 4(

+ e7πi/4 5 + eπi/2 6 + e5πi/4 7 )
 

(9.5d)

 

QFT 4 =
1

2 2
e
2πi4

0

8 0 + e
2πi4

1

8 1 + e
2πi4

2

8 2 + e
2πi4

3

8 3 + e
2πi4

4

8 4(

+ e
2πi4

5

8 5 + e
2πi4

6

8 6 + e
2πi4

7

8 7 )
=

1

2 2
0 + eπi 1 + 2 + eπi 3 + 4 + eπi 5 + 6 + eπi 7( )

 
(9.5e)

 

QFT 5 =
1

2 2
e
2πi5

0

8 0 + e
2πi5

1

8 1 + e
2πi5

2

8 2 + e
2πi5

3

8 3 + e
2πi5

4

8 4(

+ e
2πi5

5

8 5 + e
2πi5

6

8 6 + e
2πi5

7

8 7 )
=

1

2 2
0 + e5πi/4 1 + eπi/2 2 + e7πi/4 3 + eπi 4(

+ eπi/4 5 + e3πi/2 6 + e3πi/4 7 )
 

(9.5f)

 

QFT 6 =
1

2 2
e
2πi6

0

8 0 + e
2πi6

1

8 1 + e
2πi6

2

8 2 + e
2πi6

3

8 3 + e
2πi6

4

8 4(

+ e
2πi6

5

8 5 + e
2πi6

6

8 6 + e
2πi6

7

8 7 )
=

1

2 2
0 + e3πi/2 1 + eπi 2 + eπi/2 3 + 4(

+ e3πi/2 5 + eπi 6 + eπi/2 7 )
 

(9.5g)

 

QFT 7 =
1

2 2
e
2πi7

0

8 0 + e
2πi7

1

8 1 + e
2πi7

2

8 2 + e
2πi7

3

8 3 + e
2πi7

4

8 4(

+ e
2πi7

5

8 5 + e
2πi7

6

8 6 + e
2πi7

7

8 7 )
=

1

2 2
0 + e7πi/4 1 + e3πi/2 2 + e5πi/4 3 + eπi 4(

+ e3πi/4 5 + eπi/2 6 + eπi/4 7 )
 
(9.5h)
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Wow, that was the most boring  thing I’ve ever done. Possibly the most boring 

 thing anyone’s ever done. I now have scientific evidence that it’s not actually 

pos si ble to die of boredom.

Now let’s use the QFT to determine the period of the three- qubit state 

1

2
0 + 4( ).

QFT
1

2
0 + 4( ) =

1

2
QFT 0 +QFT 4( ).

And now we just plug in Eqs. (9.5a) and (9.5e), and use eπi = −1:

1

2
QFT 0 +QFT 4( ) =

1

2

1

2 2
0 + 1 + 2 + 3 + 4 + 5 + 6 + 7( )⎡

⎣⎢

+
1

2 2
0 − 1 + 2 − 3 + 4 − 5 + 6 − 7( )⎤

⎦⎥

=
1

2
0 + 2 + 4 + 6( ).

Now we examine the result of the QFT: 
1

2
0 + 2 + 4 + 6( ).  There are 

nonzero amplitudes only for ||k〉〉 where k is a multiple of 2. This means that 

2 = N/r, or r = N/2, where N = 23 = 8, so r = 4. Indeed, the period of 
1

2
0 + 4( ) 

is 4 :
1

2
0 + 4( ) =

1

2
0 +0 1 + 0 2 + 0 3 +

1

2
4 + 0 5 + 0 6 + 0 7 . 

The periodic sequence of amplitudes is 
1

2
, 0, 0, 0,

1

2
, 0, 0, 0. The repeating 

pattern is 
1

2
, 0, 0, 0, which has a size of 4.

Our next task is to figure out how to construct the QFT out of standard 

gates. We already saw that for a single qubit, the QFT is just H.

For two qubits, we return to Eq. (9.4), but we write the numbers in binary:

 QFT 00 =
1

2
00 + 01 + 10 + 11( )  (9.6a)

 QFT 01 =
1

2
00 + i 01 − 10 − i 11( )  (9.6b)

 QFT 10 =
1

2
00 − 01 + 10 − 11( )  (9.6c)

 QFT 11 =
1

2
( 00 − i 01 − 10 + i 11 )  (9.6d)

Next, we want to  factor each expression on the right side into a product of 

two single- qubit states. Equation (9.6a) is easy.  We’ve seen this before:

  QFT 00 =
1

2
00 + 01 + 10 + 11( ) =

1

2
0 + 1( )

1

2
0 + 1( ).  (9.7a)
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To  factor Eq. (9.6b), we recognize that an i appears where the qubit on the 

right is 1 , and a minus sign appears where the qubit on the left is 1 . This 

suggests factoring as follows:

QFT 01 =
1

2
00( + i 01 − 10 − i 11 ) =

1

2
0 − 1( )

1

2
0 + i 1( ).  (9.7b)

We can confirm that the factored result is correct by using FOIL 

multiplication.

To  factor Eq. (9.6c), we notice that a minus sign appears where the qubit 

on the right is 1 , so

  QFT 10 =
1

2
00 − 01 + 10 − 11 ) =

1

2
0 + 1( )

1

2
0 − 1( ).  (9.7c)

And last, to  factor Eq. (9.6d), we see that an i appears where the qubit on the 

right is 1 , which suggests that the factored expression for the qubit on the right 

 will include i 1 . We see that a minus sign appears when one qubit is 0  and 

the other is 1 . This means that the factored expression for each qubit should 

have a minus sign before the 1 . Ultimately, this means

 QFT 11 =
1

2
00 − i 01 − 10 + i 11( )

=
1

2
0 − 1( )

1

2
0 − i 1( ).

 

(9.7d)

The next step is to concoct a single equation that works for all four cases 

of Eq. (9.7). To do this,  we’ll write QFT||j1j0〉〉, where j1 and j0 are each  either 

0 or 1. Now let’s look at the factored expressions in Eq. (9.7), and focus on 

the first qubit (the qubit on the left). This qubit is  either 
1

2
0 + 1( ) or 

1

2
0 − 1( ). In fact, the qubit is 

1

2
0 + 1( ) when j0 = 0, and the qubit is 

1

2
0 − 1( )  when j0 = 1. In other words, the qubit on the left, in the result, is 

H||j0〉〉.
Next, we focus on the qubit on the right in the result in Eq. (9.7). We get 

a minus sign when j1 = 1, which suggests that we start with H||j1〉〉. And the 1  

gets a  factor of i when j0 = 1. Notice that i = eiπ/2. Notice, further, that eiπj0 /2  is i 

j[0]

j[1] H P
(pi / 2)

H

Figure 9.1. The two- qubit quantum Fourier transform, created using IBM 

Quantum.
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when j0 = 1, and it’s 1 when j0 = 0. So instead of saying that the 1  gets a 

 factor of i when j0 = 1, we can say that it always gets of  factor of eiπj0 /2. The 

gate that multiplies 1  by eiπj0 /2  is called P(πj0/2). In general, the P(θ) gate, or 

phase gate, has no effect on 0 , but it multiplies 1  by the relative phase 

 factor eiθ:

P(θ) 0  = 0

P(θ) 1  = eiθ 1

So the general equation for the QFT for two qubits is

 QFT||j1j0〉〉 = H||j0〉〉P(πj0/2)H||j1〉〉, (9.8)

where the phase gate acts on what comes  after it.

At last, we can construct the QFT for two qubits. Let’s look at the cir cuit 

in Fig. 9.1 and show that it’s equivalent to Eq. (9.8). The initial state is ||j1j0〉〉. 
 After the H gate on the bottom qubit, the state becomes H||j1〉〉||j0〉〉. Next, we 

have a P(π/2) that acts only when j0 = 1. Equivalently, we can say that P(πj0/2) 

always acts (on the bottom qubit)  because when j0 = 0, we get P(0), which 

 doesn’t do anything. So  after the P gate, the state is P(πj0/2)H||j1〉〉||j0〉〉.  After the 

H gate on the top qubit, the state is is P(πj0/2)H||j1〉〉H||j0〉〉. Comparing this to 

Eq. (9.8), we see that the two qubits are in the wrong order. So we apply a 

SWAP gate, which simply reverses the order. The SWAP is shown by the ver-

tical line with X’s at each end.

Now we move on to the QFT cir cuit for three qubits. We need the equiv-

alent of Eq. (9.7) for three qubits. In Eq. (9.5a), we see that QFT 0  = QFT||000〉〉 
is the equally weighted superposition of all eight basis states for three qubits. 

An equally weighted superposition, like Eq. (9.7a), can be factored into 

1

2
0 + 1( )  for each qubit:

 

QFT 000 =
1

2 2
000 + 001 + 010 + 011 + 100(

+ 101 + 110 + 111 )

=
1

2
0 + 1( )

1

2
0 + 1( )

1

2
0 + 1( )

 
(9.9a)

If we want to confirm the final factored form, we simply multiply two  factors 

together to obtain 
1

2
00 + 01 + 10 + 11( ), and then we multiply each of 

the four terms by the final  factor of 
1

2
0 + 1( ).

Now let’s rewrite Eq. (9.5b) in binary, to prepare to  factor it:

QFT 001 =
1

2 2
000 + eπi/4 001 + eπi/2 010 + e3πi/4 011 + eπi 100(

+ e5πi/4 101 + e3πi/2 110 + e7πi/4 111 )
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The trick  here is to look at the terms that each have one 1 : ||001〉〉, ||010〉〉, and 

||100〉〉. ||001〉〉 is multiplied by eπi/4 , which means that the qubit on the right can 

be factored into 
1

2
0 + eπi/4 1( ). Similarly, ||010〉〉 is multiplied by eπi/2, so the 

 middle qubit can be factored into 
1

2
0 + eπi/2 1( ). Last, ||100〉〉 is multiplied 

by eπi ,  so the qubit that’s left (and on the left) can be factored into 

1

2
0 + eπi 1( ) :

 

QFT 001 =
1

2 2
000 + eπi/4 001 + eπi/2 010 + e3πi/4 011 + eπi 100(

+ e5πi/4 101 + e3πi/2 110 + e7πi/4 111 )

=
1

2
0 + eπi 1( )

1

2
0 + eπi/2 1( )

1

2
0 + eπi/4 1( )

 
(9.9b)

We can confirm that the factoring is correct by multiplying out the  factors 

completely. Alternatively, we can pick a term with more than one 1 , like 

e3πi/4||011〉〉. This term is obtained by multiplying the 0  of the left qubit by 

the eπi/2 1  of the  middle qubit and the eπi/4 1  of the right qubit. eπi/2 multi-

plied by eπi/4 indeed equals the e3πi/4 in front of ||011〉〉.
We apply the same  process to obtain the QFT of the remaining compu-

tational basis states. Again, the trick is to look at the  factors multiplying ||100〉〉, 
||010〉〉, and ||001〉〉. If ||100〉〉 is multiplied by C, then the first qubit (on the left) 

can be factored into 
1

2
0 +C 1( ).  A similar rule applies to the second and 

third qubits (from the left).  These are the results:

QFT 010 =
1

2 2
000 + eπi/2 001 + eπi 010 + e3πi/2 011 + 100(

+ eπi/2 101 + eπi 110 + e3πi/2 111 )

=
1

2
0 + 1( )

1

2
0 + eπi 1( )

1

2
0 + eπi/2 1( )  (9.9c)

QFT 011 =
1

2 2
000 + e3πi/4 001 + e3πi/2 010 + eπi/4 011 + eπi 100(

+ e7πi/4 101 + eπi/2 110 + e5πi/4 111 )

=
1

2
0 + eπi 1( )

1

2
0 + e3πi/2 1( )

1

2
0 + e3πi/4 1( )  (9.9d)

QFT 100 =
1

2 2
000 + eπi 001 + 010 + eπi 011 + 100(

+ eπi 101 + 110 + eπi 111 )

=
1

2
0 + 1( )

1

2
0 + 1( )

1

2
0 + eπi 1( )  (9.9e)
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QFT 101 =

1

2 2
000 + e5πi/4 001 + eπi/2 010 + e7πi/4 011 + eπi 100(

+ eπi/4 101 + e3πi/2 110 + e3πi/4 111 )

=
1

2
0 + eπi 1( )

1

2
0 + eπi/2 1( )

1

2
0 + e5πi/4 1( )  (9.9f)

QFT 110 =
1

2 2
000 + e3πi/2 001 + eπi 010 + eπi/2 011 + 100(

+ e3πi/2 101 + eπi 110 + eπi/2 111 )

=
1

2
0 + 1( )

1

2
0 + eπi 1( )

1

2
0 + e3πi/2 1( )  (9.9g)

QFT 111 =
1

2 2
000 + e7πi/4 001 + e3πi/2 010 + e5πi/4 011(

+ eπi 100 + e3πi/4 101 + eπi/2 110 + eπi/4 111 )

=
1

2
0 + eπi 1( )

1

2
0 + e3πi/2 1( )

1

2
0 + e7πi/4 1( )  (9.9h)

Now  we’re ready to come up with a single equation equivalent to the 

eight versions of Eq. (9.9). We want a single equation for QFT||j2j1j0〉〉, where 

j2, j1, and j0 are each  either 0 or 1. Examining the factored results in Eq. (9.9), 

we see that the qubit on the left always gets factored into  either 
1

2
0 + 1( ) 

or 
1

2
0 + eπi 1( ).  In fact, we see a pattern, looking from Eq. (9.9a) to (9.9b) 

to (9.9c),  etc.: In the QFT, the qubit on the left alternates between 

1

2
0 + 1( ) and 

1

2
0 + eπi 1( ) =

1

2
0 − 1( ). So when j0 is 0, the qubit 

on the left becomes 
1

2
0 + 1( ) = H 0 ,  and when j0 is 1, the qubit on the 

left becomes 
1

2
0 − 1( ) = H 1 . In all cases, the qubit on the left becomes 

H||j0〉〉, just as in Eq. (9.8), for two qubits.

The  middle qubit in the QFT in Eq. (9.9) cycles through four expres-

sions: 
1

2
0 + 1( ),  

1

2
0 + eπi/2 1( ) =

1

2
0 + i 1( ),  

1

2
0 + eπi 1( ) =

1

2
0 − 1( ), and 

1

2
0 + e3πi/2 1( ) =

1

2
0 − i 1( ).  These are the same four 

expressions for the right qubit in Eq. (9.7). All four expressions are equivalent 

to P(πj0/2)H||j1〉〉, as in Eq. (9.8).

So far,  we’ve seen that the first qubit in the QFT of three qubits is H||j0〉〉, 
and the second qubit is P(πj0/2)H||j1〉〉. We can show that the third qubit is 

P(πj0/4)P(πj1/2)H||j2〉〉. We could test this by  going through all eight versions of 

Eq. (9.9). For example, in Eq. (9.9h), j0 = j1 = j2 = 1, and P(πj0/4)P(πj1/2)H||j2〉〉= 
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P ( π/ 4 ) P ( π/ 2 ) H 1  = P
π

4

⎛
⎝⎜

⎞
⎠⎟ P

π

2

⎛
⎝⎜

⎞
⎠⎟

1

2
0 − 1( ) = P

π

4

⎛
⎝⎜

⎞
⎠⎟

1

2
0 − eiπ/2 1( ) =

1

2
0 − e3iπ/4 1( ). This  doesn’t quite look like the third qubit in Eq. (9.9h), 

1

2
0 + e7πi/4 1( ).   These two expressions actually are equal  because −1 = eiπ, 

so − e3iπ 4 = eiπe3iπ 4 = e7πi 4. So the complete expression for the QFT for three 

qubits is

 QFT||j2j1j0〉〉 = H||j0〉〉P(πj0/2)H||j1〉〉P(πj0/4)P(πj1/2)H||j2〉〉. (9.10)

Let’s see how Fig. 9.2 implements Eq. (9.10). The initial state is ||j2〉〉||j1〉〉||j0〉〉. 
 After the H on the bottom qubit, the state is H||j2〉〉||j1〉〉||j0〉〉. Next, P(π/2) is applied 

to the bottom qubit, but only if j1 = 1. Equivalently, P(πj1/2) is always applied 

to the bottom qubit, so the state becomes P(πj1/2)H||j2〉〉||j1〉〉||j0〉〉. Next, P(π/4) is 

applied to the bottom qubit if j0 = 1, or, equivalently, P(πj0/4) is always applied 

to the bottom qubit. The state becomes P(πj0/4)P(πj1/2)H||j2〉〉||j1〉〉||j0〉〉.
 After the H on the  middle qubit, the state is P(πj0/4)P(πj1/2)H||j2〉〉H||j1〉〉||j0〉〉. 

The final controlled P gate is effectively P(πj0/2), which makes the state 

P(πj0/4)P(πj1/2)H||j2〉〉P(πj0/2)H||j1〉〉||j0〉〉. The H on the top qubit makes the 

state P(πj0/4)P(πj1/2)H||j2〉〉P(πj0/2)H||j1〉〉H||j0〉〉. Comparing this to Eq. (9.10), 

we see that the first and last qubits are reversed, so we correct this with a 

SWAP.

Let’s again apply the three- qubit QFT to states with periodic amplitudes, 

so that we can extract the period from the QFT. As before, let’s try the state 

1

2
0 + 0 1 + 0 2 + 0 3 +

1

2
4 + 0 5 + 0 6 + 0 7 .  The sequence of am-

plitudes is 
1

2
, 0, 0, 0,

1

2
, 0, 0, 0. The pattern is a sequence of four items that 

repeat, so the period is r = 4. Let’s pretend that we  don’t know this result, and 

 we’ll use the QFT to determine r.

j[0]

j[1]

j[2] H P
(pi / 2)

P
(pi / 4)

H P
(pi / 2)

H

Figure 9.2. The three- qubit quantum Fourier transform, created using IBM 

Quantum. Originally published in Jed Brody and Kristen Gram, “Factoring 

15 with a Remote Quantum Computer: A Complete Guide for Beginners,” 

 European Journal of Physics, April 2024, https:// iopscience . iop . org / article 

/ 10 . 1088 / 1361 - 6404 / ad32dc /pdf,  under open license CC BY 4.0.

https://iopscience.iop.org/article/10.1088/1361-6404/ad32dc/pdf
https://iopscience.iop.org/article/10.1088/1361-6404/ad32dc/pdf
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We have two choices. We can repeat what we did previously and apply 

Eq. (9.5) to our state to manually calculate the QFT. Alternatively, we can 

construct the state and the QFT in IBM Quantum, and then run the cir cuit to 

determine the QFT. This is less work! The quantum pro cessor (or simulator) 

does the math for us.

Before the QFT, we first need to create the state 
1

2
0 +

1

2
4 =

1

2
000 + 100( ) =

1

2
0 + 1( ) 00 = H 0 00 . Since the default initial state 

is 0  for all qubits, we simply need to apply an H to the bottom qubit to create 

the desired state, 
1

2
0 +

1

2
4 . The complete cir cuit is shown in Fig. 9.3. 

The H gate before the dashed line creates the state 
1

2
0 +

1

2
4 ,  and the 

rest of the cir cuit is the QFT.

The simulated results are shown in Fig. 9.4. The pos si ble results are 000, 

010, 100, and 110. Converting  these binary numbers to base ten, they are 0, 

2, 4, and 6, which are multiplies of 2. This tells us that 2 = N/r, where r is the 

period we seek, and N = 23 = 8 since we have three qubits. So r = N/2 = 8/2 = 4, 

which is correct.

j[0]

j[1]

j[2]

c3

H H P
(pi / 2)

P
(pi / 4)

H P
(pi / 2)

H

0 1 2

Figure 9.3. The cir cuit to generate the QFT of 
1

2
0 +

1

2
4 , created using 

IBM Quantum.

000 010 100 110

250

200

150

100

50

0

F
re

qu
en

cy

Measurement outcome

Figure 9.4. Results from the cir cuit in Fig. 9.3, created using IBM Quantum.



QFT and IQFT … WTF?  115

Let’s try one more example. Let’s find the QFT of 
1

2
0 + 0 1 +

1

2
2 +

0 3 +
1

2
4 + 0 5 +

1

2
6 +0 7 . The periodic sequence of amplitudes is 1/2, 0, 

1/2, 0, 1/2, 0, 1/2, 0. The repeating pattern consists of two items, so the pe-

riod r = 2.

To first create the state of 
1

2
0 +

1

2
2 +

1

2
4 +

1

2
6 =

1

2
000 + 010(  

+ 100 + 110 ) =
1

2
00 + 01 + 10 + 11( ) 0 =

1

2
0 + 1( )

1

2
0 + 1( ) 0 ,  

we need to apply an H gate to both the bottom qubit and the  middle qubit. 

The QFT is unaffected, so the total cir cuit is what’s shown in Fig. 9.5.

The simulated results are in Fig. 9.6. The pos si ble results are 0 and 4, in 

base ten.  These are multiples of 4, so 4 = N/r, so r = N/4 = 8/4 = 2. This is the 

correct result.

 Later, we  will need a cir cuit that reverses the effect of the QFT. In other 

words, we want the inverse quantum Fourier transform (IQFT). If the IQFT 

is applied immediately  after the QFT, all the individual gates must cancel each 

other out so that nothing happens. So the IQFT consists of the inverses of the 

individual gates of the QFT, in the opposite order. The individual gates are 

j[0]

j[1]

j[2]

c3

H

H H P
(pi / 2)

P
(pi / 4)

H P
(pi / 2)

H

0 1 2

Figure 9.5. The cir cuit to generate the QFT of 
1

2
0 +

1

2
2 +

1

2
4 +

1

2
6 ,  

created using IBM Quantum.
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Measurement outcome

Figure 9.6. Results from the cir cuit in Fig. 9.5, created using IBM Quantum.
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H gates, SWAP gates, and controlled P gates. We know that H is its own in-

verse, and it’s pretty clear that SWAP is its own inverse. What’s the inverse of 

a P gate? Since P(θ) multiplies 1  by eiθ, the inverse must multiply 1  by e−iθ. 

P(−θ) does this. The IQFT for three qubits therefore looks like Fig. 9.7.

Before leaving this chapter, let’s find an equivalent expression for 

Eq. (9.10),

QFT||j2j1j0〉〉 = H||j0〉〉P(πj0/2)H||j1〉〉P(πj0/4)P(πj1/2)H||j2〉〉.

The leftmost qubit on the right side of the equation is H||j0〉〉. We can write 

H j0 〉 =
1

2
0 + eiπj0 1( )   because eiπj0 = +1  when j0 = 0 and eiπj0 = −1 when 

j0 = 1, using Eqs. (9.1b) and (9.1f). Let’s use H j0 =
1

2
0 + eiπj0 1( ) and the 

equivalent expressions for H||j1〉〉 and H||j2〉〉:

QFT j2j1j0 〉 =
1

2
0 + eiπj0 1( )P πj0 /2( )

1

2
0 + eiπj1 1( )

P πj0 /4( )P πj1 /2( )
1

2
0 + eiπj2 1( ).

The P(θ) gates simply multiply the 1  of the targeted qubit by eiθ, so

 

QFT j2j1j0 =
1

2
0 + eiπj0 1( )

1

2
0 + eiπ j1 + j0 /2( ) 1( )

1

2
0 + eiπ j2 + j1 /2 + j0 /4( ) 1( ).  (9.11)

This equation  will come in handy in the next chapter.

Figure 9.7. The three- qubit inverse quantum Fourier transform, created 

using IBM Quantum.

q[0]

q[1]

q[2]

H

P
(-pi / 2)

H

P
(-pi / 4)

P
(-pi / 2)

H
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Quantum Phase Estimation
I Can Value Eigenvalues

W
e are closer than ever to the farthest Shor. We can smell the cook-

ing fires and hear the barking of the dogs of the  people encamped 

 there. We just have to push through a  little more math, and then 

we can understand how Shor’s algorithm has the potential to menace internet 

security.

Shor’s algorithm makes use of a cir cuit that performs quantum phase es-

timation. This is a cir cuit that determines something called the eigenvalue of 

an operator. To understand eigenvalues, let’s look at the Z gate.

We recall that Z 0  = 0  and Z 1 =− 1 . We see that when Z acts on 1 , 

the result is 1 , times −1. 1  is called an eigenstate of Z, which means that 

when Z acts on 1 , we get back 1  times a number, −1; this number is called 

an eigenvalue. When Z acts on 0 , we get back 0  times +1, so 0  is another 

eigenstate of Z, and +1 is the corresponding eigenvalue.

The eigenstates of Z are the computational basis states, 0  and 1 . But 

other gates have eigenstates that are more complicated. Consider the X gate. 

We recall that X 0  = 1  and X 1  = 0 . 0  and 1  are not eigenstates of X: 

When X acts on 0 , we do not get back 0  times a number, and when X acts 

on 1 , we do not get back 1  times a number. So the eigenstates of X must be 

some superposition of 0  and 1 : α 0  + β 1 .

With just a  little algebra, we can determine α and β to identify the eigen-

states of X. If an eigenstate of X is α 0  + β 1 , then X(α 0  + β 1 ) must equal 

α 0  + β 1  times the eigenvalue, which is often called λ:

X(α 0  + β 1 ) = λ(α 0  + β 1 ).

The left side becomes α 1  + β 0 , and the right side is simply λα 0  + λβ 1 , so

α 1  + β 0  = λα 0  + λβ 1 .

The amplitude of 0  must be the same on both sides, so β = λα. Similarly, the 

amplitude of 1  must be the same on both sides, so α = λβ. If we plug α = λβ 
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into β = λα, we get β = λ2β, so λ2 = 1. This equation has two solutions for λ, 

+1, and −1. So the two eigenvalues of X are +1 and −1.

To find the eigenstates, we take one eigenvalue at a time and plug it into 

β = λα. When the eigenvalue λ = 1, β = α. To get a normalized state α 0  + β 1 , 

we can choose α = β =
1

2
, so the eigenstate is 

1

2
0 +

1

2
1 . For the other 

eigenvalue, λ = −1, β = λα = −α. So we can choose β = − α = −
1

2
, giving us the 

other eigenstate, 
1

2
0 − 1

2
1 .

Gates that act on two or more qubits also have eigenvalues and eigen-

states. For example, the controlled Z, CZ, multiplies ||11〉〉 by −1 and has no 

effect on ||00〉〉, ||01〉〉, and ||10〉〉. So ||11〉〉 is an eigenstate with eigenvalue −1, and 

||00〉〉, ||01〉〉, and ||10〉〉 are all eigenstates that share the eigenvalue +1. (Eigen-

states that share the same eigenvalue are called degenerate, which is not in-

tended as a moral judgment.)

So far, all the eigenvalues have been +1 or −1. It can be shown that the 

eigenvalues λ of all quantum operators satisfy ||λ||2 = 1. So +1 and −1 are pos si-

ble eigenvalues, but so is eiθ for any real number θ. (Recall that ||λ||2 = λλ*, where 

λ* is the complex conjugate of λ. To find the complex conjugate of λ, simply 

replace  every i with −i. So if λ = eiθ, λ* = e−iθ, and ||λ||2 = λλ*=eiθe−iθ = e0 = 1.)

Since the eigenvalues of  every quantum operator can be written λ = eiθ, 

our goal is to determine θ. The determination, or estimation, of θ is called 

quantum phase estimation. Now, suppose that λ = −1, which means that θ = π, 

according to Eq. (9.1f). How can our  measurement of qubits give us the value 

π? When we  measure qubits, we get 0’s and 1’s. It would take a lot of 0’s and 

1’s to accurately estimate π.

So, we define j =
θ
2π

 so that the eigenvalue we seek is

  λ = eiθ = e2πij. (10.1)

Our cir cuit  will give us j, from which we calculate the eigenvalue λ. Now, if 

λ = −1 = eiπ = e2πj, then j = 1/2. j = 1/2 is a much simpler number than θ = π. But 

still, how can our  measurement of 0’s and 1’s give us 1/2? In fact, the j we 

seek is always a fraction. How do we represent a fraction with 0’s and 1’s?

In ordinary base ten, 0.1 is one- tenth, 0.01 is one- hundredth,  etc.  Every 

position  after the decimal point gets smaller by a  factor of 10. In base two, 

 every place  after the decimal point gets smaller by a  factor of 2. So 0.1 is one- 

half, 0.01 is one- quarter, and 0.001 is one- eighth. Let’s look at the fractions 

we can represent with three bits  after the decimal point:

0.000 = 0

0.001 = 1/8

0.010 = 1/4

0.011 = 1/4 + 1/8 = 3/8

0.100 = 1/2
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0.101 = 1/2 + 1/8 = 5/8

0.110 = 1/2 + 1/4 = 3/4

0.111 = 1/2 + 1/4 + 1/8 = 7/8

So if we have three fractional bits, we can represent 0/8, 1/8, 2/8, 3/8, 4/8, 

5/8, 6/8, and 7/8.

When we do quantum phase estimation, we need to decide how many 

qubits to use to estimate j. I  will use three qubits, so our  measurement  will 

yield one of eight values: 000, 001, 010, 011, 100, 101, 110, and 111. We 

choose to use the three qubits to represent the fractional bits of j. So if the 

 measured result is 010, for example, this means that j = 0.010 = 1/4, and 

θ = 2πj = π/2, and fi nally the eigenvalue λ = eiθ = eiπ/2 = i, according to Eq. (9.1d). 

The eight pos si ble eigenvalues that can be estimated with three qubits are 

shown in  Table 10.1, where the final column makes use of Eq. (9.1).

If we allocated four qubits to estimate j,  there would be 16 pos si ble re-

sults, and 16 pos si ble estimates of the eigenvalue. Each additional qubit dou-

bles the number of pos si ble results. For our purposes, three qubits are 

sufficient.

To prepare to study the cir cuit that implements quantum phase estima-

tion, consider Fig. 10.1, where ||v〉〉 is an eigenstate of U so that U||v〉〉 = eiθ||v〉〉. 
Since the control is 0 , the U gate is not applied, and nothing happens.

 Table 10.1

 Measured result j θ = 2πj λ = eiθ

000 0.000 = 0 0 1

001 0.001 = 1/8 π/4 1+ i

2

010 0.010 = 1/4 π/2 i

011 0.011 = 3/8 3π/4 − 1+ i

2

100 0.100 = 1/2 π −1

101 0.101 = 5/8 5π/4 
− 1+ i

2

110 0.110 = 3/4 3π/2 −i

111 0.111 = 7/8 7π/4 1− i

2

U|vi

|0i

|vi

|0i

Figure 10.1. A controlled operator that does not act on its eigenvalue 

 because the control is 0 , created using the Quantikz LaTeX package.
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What if the control is 1 , as in Fig. 10.2? Since the control is 1 , U acts 

on ||v〉〉. Since ||v〉〉 is an eigenstate, U||v〉〉 is ||v〉〉 times the eigenvalue, eiθ.

Now, the cir cuit we  really want to understand is in Fig. 10.3. The initial 

state is 
1

2
0 + 1( ) v =

1

2
0 v + 1 v( ). The controlled U has no effect on 

0 ||v〉〉  because the control is 0 . However, when the controlled U acts on the 

1 ||v〉〉 term, the U acts on ||v〉〉  because the control is 1 , so this term is multi-

plied by eiθ. The final state is 
1

2
0 v + 1 eiθ v( ) =

1

2
0 + eiθ 1( ) v . So 

even though the upper qubit is the target, the controlled U effectively attaches 

a  factor of eiθ to the 1  in the lower qubit. (This is called phase kickback.)

Given that ||v〉〉 is an eigenstate of U, we want to determine the associated 

eigenvalue, λ = eiθ = e2πij. If we allocate three qubits to determine j, our 

 measurement  will yield three fractional bits of j. If j = 0.j2j1j0 is a binary frac-

tion, the  measurement  will yield j2j1j0. Let’s see how Fig. 10.4 performs the 

quantum phase estimation.

|vi

|0i

|0i

|0i

|vi

| j0i

| j1i

| j2i

U U2 U4

H

IQFTH

H

Figure 10.4. Quantum phase estimation, created using the Quantikz LaTeX 

package.

U|vi

|1i

eiθ|vi

|1i

Figure 10.2. A controlled operator that acts on its eigenvalue  because the 

control is 1 , created using the Quantikz LaTeX package.

U|vi

(|0i + |1i)1—
Ï·2

Figure 10.3. A controlled operator with a superposition on the control, 

created using the Quantikz LaTeX package.
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The initial state is 0 0 0 ||v〉〉, where the top qubit, ||v〉〉, is an eigenstate of U. 

 After the H gates, the overall state is 
1

2
0 + 1( )

1

2
0 + 1( )

1

2
0 +(

1 ) v . The controlled U, as  we’ve just seen, effectively attaches a  factor of eiθ 

to the 1  in the control qubit. The state  after the controlled U is thus 

1

2
0 + 1( )

1

2
0 + 1( )

1

2
0 + eiθ 1( ) v .

Since U2||v〉〉 = UU||v〉〉 = Ueiθ||v〉〉 = eiθU||v〉〉 = e2iθ||v〉〉, the controlled U2 effectively 

attaches a  factor of e2iθ to the 1  in the control qubit. So the state  after the 

controlled U2 is 
1

2
0 + 1( )

1

2
0 + e2iθ 1( )

1

2
0 + eiθ 1( ) v . By the same 

logic, the controlled U4 attaches a  factor of e4iθ to the 1  in the control qubit, 

producing the state 
1

2
0 + e4iθ 1( )

1

2
0 + e2iθ 1( )

1

2
0 +( eiθ 1 ) v .  

Next, we  will substitute θ = 2πj = 2π(0.j2j1j0). 0.j2j1j0 is a binary fraction, 

so it’s equal to j2/2 + j1/4 + j0/8, so θ = π(j2 + j1/2 + j0/4). Substituting this into our 

expression for the state  after the controlled U4, we obtain

 

1

2
0 + eiπ 4j2 + 2j1 + j0( ) 1( )

1

2
0 + eiπ 2j2 + j1 + j0 /2( ) 1( )

1

2
0 + eiπ j2 + j1 /2 + j0 /4( ) 1( ) v .  (10.2)

This can be simplified. Consider the  factor eiπ 4j2 + 2j1 + j0( ).  Using the alge-

braic rule ea + b = eaeb, eiπ 4j2 + 2j1 + j0( ) = e4j2πie2j1πiej0πi. Let’s start with the  middle 

 factor, e2j1πi. j1 is  either 0 or 1. In  either case, e2j1πi  is 1: If j1 is 0, e2j1πi = e0 = 1 

 because anything to the 0 power is 1, and if j1 is 1, e2j1πi = e2πi = e0 from 

Eq. (9.1j). Since e2j1πi = 1 in any case, and a  factor of 1  doesn’t do anything, 

the  factor of e2j1πi  can be dropped. Similarly, the  factor of e4j2πi is e0 = 1 if j2 is 

0, and if j2 is 1, then e4j2πi = e4πi = e2πi = e0 from repeated use of Eq. (9.1j). So 

the  factor of e4j2πi is always 1 and can be dropped.

The  middle term in Eq. (10.2) is eiπ 2j2 + j1 + j0 /2( ) = e2j2πiej1πiej0πi/2. By the 

reasoning in the previous paragraph, e2j2πi is always 1 and can be dropped. 

Dropping from Eq. (10.2) all  factors of 1, we obtain 
1

2
0 + eiπj0 1( )

1

2
0 +(

eiπ j1 + j0 /2( ) 1 )
1

2
0 + eiπ j2 + j1 /2 + j0 /4( ) 1( ) v . And what to our wondering eyes 

does appear but the right- hand side of Eq. (9.11), followed by ||v〉〉 for the top 

qubit. So the state of the qubits just before the IQFT is exactly QFT||j2j1j0〉〉||v〉〉. 
The IQFT cancels the QFT, and the final state of the cir cuit is simply ||j2j1j0〉〉||v〉〉. 
So a  measurement of the bottom three qubits yields j2j1j0, from which we de-

termine j = 0.j2j1j0, from which we determine the eigenvalue λ = eiθ = e2πij. Are 

we having fun yet? (Answer: Yes, so very much!) Let’s see how this works 

with a specific example.
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Suppose we know that 1  is an eigenstate of Z, but we  don’t know the 

eigenvalue. So we decide to apply quantum phase estimation. The cir cuit is in 

Fig. 10.5.

The top qubit needs to be initialized to 1 , the eigenstate  we’re interested 

in. Since 0  is the default starting state, we use a NOT to create the 1 . Next, 

we apply an H gate to the three qubits that  will be used to estimate the eigen-

value. Next we have a controlled Z, which shows up as a line with a dot at 

each end in IBM Quantum. Next we need a controlled Z2, or equivalently, 

two controlled Z gates in a row. We could actually omit  these gates  because 

Z2 = I. Similarly, we could omit the four controlled Z gates that act as a con-

trolled Z4. Following this, we have the IQFT from Fig. 9.7, and then we 

 measure the three bottom qubits to determine j = 0.j2j1j0. Figure 10.6 gives the 

results obtained on a real quantum pro cessor called ibmq_lima.

Ideally, 100% of the results would be 100. Due to error, other results 

occur occasionally, but 100 is clearly the dominant result. This means that j is 

the binary fraction 0.100, which is 1/2. So the eigenvalue is eiθ = e2πij = e2πi/2 = 

eπi = −1, which is exactly the correct eigenvalue! Z 1  = − 1 , so Z acting on its 

eigenstate 1  returns the eigenstate multiplied by −1.
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Figure 10.5. Quantum phase estimation to determine the eigenvalue 

associated with the 1  eigenvector of Z, created using IBM Quantum.
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Figure 10.6. Results from the cir cuit in Fig. 10.5, created using IBM 

Quantum.
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If we want to determine the eigenvalue associated with the other eigen-

state, 0 , we simply remove the NOT gate so that the top qubit remains ini-

tialized to 0 , as in Fig. 10.7. The  measured results on ibmq_lima are given in 

Fig. 10.8. The dominant result in this case is 000, so j = 0.000 = 0, so the ei-

genvalue is e2πij = e0 = +1. Again, this is correct  because Z 0  = 0 : when Z acts 

on 0 , it returns the eigenstate multiplied by +1.

Let’s try one more example. Suppose we know that 1  is an eigenstate of 

P(π/4), and we want to know the corresponding eigenvalue. We construct the 

cir cuit in Fig. 10.9. The NOT gate initializes the top qubit to 1 , the eigen-

state  we’re interested in. We have the H gates, as always, on the three qubits 

that  will estimate three fractional bits of j. Then we have a controlled P(π/4), 

and then a controlled [P(π/4)]2. We could implement this with two controlled 

P(π/4) gates in a row. However, it’s simpler to recognize that since [P(π/4)]2 1   

= P(π/4)P(π/4) 1  = eiπ/4P(π/4) 1  = eiπ/4eiπ/4 1  = eiπ/2 1 , [P(π/4)]2 = P(π/2). Similarly, 

the controlled [P(π/4)]4 is equivalent to a controlled P(π). Last, we have the 

IQFT and the  measurements.

The results from ibmq_lima are shown in Fig. 10.10. The dominant re-

sult is 001, which would be the only result, in the absence of error. So 
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Figure 10.7. Quantum phase estimation to determine the eigenvalue 

associated with the 0  eigenvector of Z, created using IBM Quantum.
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Figure 10.8. Results from the cir cuit in Fig. 10.7, created using IBM 

Quantum.
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j = 0.001 = 1/8 and the eigenvalue is e2πi/8 = eπi/4. This is exactly correct since 

P(π/4) 1  = eiπ/4 1 .

Next, suppose the top qubit is not initialized to  either of the eigenstates 

of P(π/4), 0  and 1 . Let’s start the top qubit in an equally weighted superpo-

sition of  these two eigenstates, 
1

2
0 + 1( ). We achieve this by applying an 

H gate to the initial 0  in the top qubit (Fig. 10.11).

What results do we expect when the top qubit starts out in a superposi-

tion of the two eigenstates of P(π/4)? Theoretically, half of the results should 

give the eigenvalue associated with 0 , and the other half should give the ei-

genvalue associated with 1 . The  actual results on ibmq_lima are dominated 

by the two expected values (000 and 001), though error  causes other values 

to appear at lower frequencies (Fig. 10.12).
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Figure 10.9. Quantum phase estimation to determine the eigenvalue 

association with the 1  eigenvector of P(π/4), created using IBM Quantum. 

Originally published in Jed Brody and Kristen Gram, “Factoring 15 with a 

Remote Quantum Computer: A Complete Guide for Beginners,”  European 

Journal of Physics, April 2024, https:// iopscience . iop . org / article / 10 . 1088 

/ 1361 - 6404 / ad32dc /pdf,  under open license CC BY 4.0.
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Figure 10.10. Results from the cir cuit in Fig. 10.9, created using IBM 

Quantum.

https://iopscience.iop.org/article/10.1088/1361-6404/ad32dc/pdf
https://iopscience.iop.org/article/10.1088/1361-6404/ad32dc/pdf
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 We’re inching  toward Shor’s algorithm. In our implementation of Shor’s 

algorithm, we  will want to determine the eigenvalues of an operator U that 

acts on four qubits. So our phase estimation cir cuit  will look like Fig. 10.13. 

 We’ll call the top four qubits the eigenstate register, since we want U to act on 

its eigenstates. The bottom three qubits are called the eigenvalue register, since 

they  will estimate the eigenvalues of U.

The U in Shor’s algorithm performs a kind of multiplication that turns 

one basis state into another basis state. For example, if U performs multipli-

cation by 2, it turns 1  into ||2〉〉: U 1  = ||2〉〉. It also turns ||2〉〉 into ||4〉〉: U||2〉〉 = ||4〉〉. 
We could just as well write the numbers in binary: U||0001〉〉 = ||0010〉〉 and 

U||0010〉〉 = U||0100〉〉, using four qubits  because  we’ve de cided that our U  will 

act on four qubits.

Now, the biggest number that four qubits can represent is 15 = 1111. So 

what happens when U tries to multiply 8 by 2? We  will use something called 

modular arithmetic, the arithmetic of remainders. AmodB is defined as the re-

mainder when A is divided by B. So 15mod12 = 3  because 15 divided by 12 is 

1 remainder 3. 37mod2 = 1  because 37 divided by 2 is 18 remainder 1.
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Figure 10.11. Quantum phase estimation to determine both eigenvalues 

association of P(π/4), created using IBM Quantum.
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Figure 10.12. Results from the cir cuit in Fig. 10.11, created using IBM 

Quantum.
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Suppose some integer J is multiplied by another integer A. Then we want 

to know the remainder when this product is divided by yet another integer N: 

AJmodN. (From now on, N is just the number  we’re dividing by to find a re-

mainder. N is no longer 2n, the number of basis states. It’s standard in quan-

tum computing books to use N for  these two unrelated purposes, but it’s not 

standard to give the reader a heads-up.) So if A is 2 and J is 8 and N is 15, 

AJmodN = (2 × 8)mod15 = 16mod15 = 1. So our modular multiplication oper-

ator, U, acts on a basis state ||J〉〉 as follows:

 U||J〉〉 = ||AJmodN〉〉. (10.3)

Suppose U multiplies by 2mod15: U||J〉〉 =||2Jmod15〉〉. For J less than 8, U||J〉〉 
is just ||2J〉〉. For example, U||7〉〉 = ||(2 × 7)mod15〉〉 = ||14〉〉  because 14 divided by 

15 is 0 remainder 14. Even if J is greater than 8,  we’re still certain that 

2Jmod15  will be less than 15  because the remainder is less than 15 when any 

number is divided by 15. So four qubits, which can represent a number as big 

as 15, are sufficient to represent 2Jmod15 for any J.

Next, let’s look at modular exponentiation: A0modN, A1modN, A2modN, 

 etc. Choosing A = 4 and N = 15, we find

40mod15 = 1

41mod15 = 4

HH

H HP(–pi/2)

P(–pi/2)P(–pi/4)H H

U2U U4

Figure 10.13. Quantum phase estimation to determine the eigenvalues of 

an operator that acts on four qubits, created using algassert . com / quirk .  

Originally published in Jed Brody and Kristen Gram, “Factoring 15 with a 

Remote Quantum Computer: A Complete Guide for Beginners,”  European 

Journal of Physics, April 2024, https:// iopscience . iop . org / article / 10 . 1088 

/ 1361 - 6404 / ad32dc /pdf,  under open license CC BY 4.0.

https://iopscience.iop.org/article/10.1088/1361-6404/ad32dc/pdf
https://iopscience.iop.org/article/10.1088/1361-6404/ad32dc/pdf
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42mod15 = 1

43mod15 = 4

44mod15 = 1

45mod15 = 4

Apparently,  there’s a repeating pattern. The number of terms in the repeating 

pattern is called the order r of 4mod15. In this case, the order r = 2  because 

 there are two terms in the repeating pattern, 1 and 4. Equivalently, the order 

of 4mod15 is the smallest positive r such that 4rmod15 = 1. We see that 

42mod15 = 1, so r = 2. 44mod15 also is 1, but 2 is smaller than 4, which is 

why the order is 2 instead of 4.

 Here’s another example. Let’s find the order of 2mod15:

20mod15 = 1

21mod15 = 2

22mod15 = 4

23mod15 = 8

24mod15 = 1

25mod15 = 2

26mod15 = 4

27mod15 = 8

In this case, the repeating pattern has four terms, 1, 2, 4, and 8, so the order 

of 2mod15 is r = 4. Equivalently, we see that 24mod15 is 1, and  there is no 

smaller positive exponent such that 2rmod15 = 1, so the order r = 4.

It can be shown that the order r of AmodN is the number of eigenstates 

of the operator U defined in Eq. (10.3). For example, if U||J〉〉 = ||4Jmod15〉〉, the 

order of 4mod15 is 2, so  there are 2 eigenstates of U. It can also be shown 

that the eigenstates of this U are

1

2
1 + 4( ),  with eigenvalue 1,

and

1

2
1 − 4( ),  with eigenvalue −1.

We  won’t derive this from scratch, but let’s prove that it’s true. Let’s make U 

act on its first eigenstate, 
1

2
1 + 4( ):

U
1

2
1 + 4( ) =

1

2
U 1 +U 4( )

=
1

2
4mod15 + 16mod15( )

=
1

2
4 + 1( ),
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which is exactly what we started with, so the eigenvalue is 1.

Now let’s have U act on its second eigenstate, 
1

2
1 − 4( ):

U
1

2
1 − 4( ) =

1

2
U 1 −U 4( )

=
1

2
4mod15 − 16mod15( )

=
1

2
4 − 1( ).

This is exactly −1 times what we started with, so the eigenvalue is −1.

More generally, it can be shown (though mercifully we  won’t show it) 

that the eigenvalues of U are e2πis/r for all  whole numbers s less than r. So when 

r = 2, as in the preceding example, s can be  either 0 or 1, and the eigenvalues 

are e0 = 1 and e2πi/2 = eπi = −1, exactly as we just saw.

 There’s one more useful property of the eigenstates of U (which is still 

the modular multiplication operator defined in Eq. [10.3]): The sum of eigen-

states of U, divided by r , is exactly 1 . Let’s see how this works for the two 

eigenstates of U given by U||J〉〉 = ||4Jmod15〉〉. We showed that the eigenstates 

are 
1

2
1 + 4( )  and 

1

2
1 − 4( ). I now claim that if we sum  these and di-

vide by r = 2 ,  we’ll get 1 :

1

2
1 + 4( ) +

1

2
1 − 4( )⎡

⎣⎢
⎤
⎦⎥

2 =
2

2
1 2 = 1 .

This is useful  because 1  is an easy state to create. If we start the eigenstate 

register in the state 1  = ||0001〉〉,  we’re actually starting it in a superposition 

of all the eigenstates of U. So when we perform quantum phase estimation, the 

final  measurement is equally likely to yield any of the eigenvalues of U.

Recall that the eigenvalues of U are e2πis/r for all  whole numbers s less 

than r. Suppose the order r is something we  don’t know. We can perform 

quantum phase estimation to determine r. In this context, the quantum phase 

estimation cir cuit is called the order- finding cir cuit. This is how it works.

Quantum phase estimation lets us determine j = 0.j2j1j0, which gives us 

the eigenvalue e2πij. Since the eigenvalues of U are e2πis/r, j = s/r for all  whole 

numbers s less than r. So the pos si ble values of j are 0/r, 1/r, 2/r, and so on, up 

to (r − 1)/r. The denominator in all cases is r, which is the number we want to 

determine. So if we use the order- finding cir cuit and find that j is 0 or 1/2, we 

conclude that r = 2: When r = 2, s is  either 0 or 1, and the pos si ble values of j 

are 0/2 and 1/2. Since we have three qubits in the eigenvalue register, the 

 actual  measured results would be  either 000 such that j = 0.000 = 0, or 100 

such that j = 0.100 = 1/2, again understanding 0.100 as a binary fraction.
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If we use the order- finding cir cuit and find that j is 0, 1/4, 1/2, or 3/4, we 

conclude that r = 4: When r = 4, s is 0, 1, 2, or 3, and the pos si ble values of j 

are 0/4, 1/4, 2/4, and 3/4. If we looked only at 2/4 = 1/2, we might conclude 

that r = 2 since the simplified denominator is 2. The 1/4 and 3/4 results are 

what convince us that r must be 4. The  actual  measured results would be 000 

such that j = 0.000 = 0, 010 such that j = 0.010 = 1/4, 100 such that j = 0.100  

= 1/2, or 0.110 such that j = 0.110 = 3/4.

The final challenge is to construct U out of standard gates.  There are 

six U’s that we  will use in Shor’s algorithm, and we  will construct each of 

 these in some detail: U||J〉〉 = ||2Jmod15〉〉, U||J〉〉 = ||4Jmod15〉〉, U||J〉〉 = ||7Jmod15〉〉, 
U||J〉〉 = ||8Jmod15〉〉, U||J〉〉 = ||11Jmod15〉〉, and U||J〉〉 = ||13Jmod15〉〉. We recall that 

our cir cuit, Fig. 10.13, contains a controlled U, and controlled U2, and a con-

trolled U4.

Let’s start with U||J〉〉 = ||2Jmod15〉〉. This operator changes 1  to ||2〉〉, ||2〉〉 to 

||4〉〉, ||3〉〉 to ||6〉〉, and so on. But actually, we  don’t need it to work for  every pos-

si ble ||J〉〉. We know that the eigenstate register starts in the state 1 , which we 

saw is a superposition of the eigenstates of U. So actually, we just need U to 

change 1  to ||2〉〉. In binary,  we’re changing ||0001〉〉 to ||0010〉〉. Two NOT gates 

accomplish this. In the order- finding cir cuit, U is controlled, so the NOTs are 

controlled NOTs. Figure  10.14 shows the beginning of the order- finding 

cir cuit.

The top four qubits are the eigenstate register. The first NOT gate initial-

izes the eigenstate register to ||0001〉〉. The bottom three qubits are the eigen-

value register, and the order- finding cir cuit includes an H gate on each of  these. 

Figure 10.14. The first part of the cir cuit to determine the order of 2mod15, 

created using IBM Quantum.
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The two controlled NOT gates form the controlled U. If the U is applied, it 

changes ||0001〉〉 to ||0010〉〉.
The next gate that  we’ll need is a controlled U2. Since U multiplies by 2, 

U2 multiplies by 4. So U2 changes 1  to ||4〉〉, ||2〉〉 to ||8〉〉, ||3〉〉 to ||12〉〉, and so on. 

Just as we  didn’t need U itself to operate on  every pos si ble basis state, we  don’t 

need U2 to operate on  every pos si ble basis state.  After the controlled U, the 

eigenstate register is in a superposition of 1  (if U  didn’t act) and ||2〉〉 (if U 

acted on 1 ). So we need our controlled U2 to operate properly on 1  and ||2〉〉. 
As stated  earlier, U2 changes 1  to ||4〉〉 and ||2〉〉 to ||8〉〉. In binary, U2||0001〉〉  
= ||0100〉〉, and U2||0010〉〉 = ||1000〉〉. So we need gates that transform ||0001〉〉 to 

||0100〉〉, and ||0010〉〉 to ||1000〉〉. Changing ||0001〉〉 to ||0100〉〉 is achieved by a 

SWAP, on the top qubit and the third qubit from the top. Similarly, changing 

||0010〉〉 to ||1000〉〉 is achieved by a SWAP on the second and fourth qubits 

from the top. The SWAPs are controlled since U2 is controlled, by the  middle 

qubit of the eigenvalue register. The cir cuit so far is shown in Fig. 10.15.

The first SWAP changes ||0001〉〉 without changing ||0010〉〉, and the second 

SWAP does the reverse, so we  don’t get any undesired changes. We cannot 

replace a controlled SWAP with two CNOTs. For example, if we replaced the 

first controlled SWAP with two CNOTs,  these would correctly change 

||0001〉〉 to ||0100〉〉, but they would incorrectly change ||0010〉〉 to ||0111〉〉.
 After the controlled U2, we have the controlled U4. But we can show that 

U4  doesn’t do anything and can be neglected. Since U multiplies by 2mod15, 

U4 multiplies by 24 = 16mod15. Multiplication by 16mod15  doesn’t do any-

thing. For example, multiplying 1 by 16mod15 produces 16mod15 = 1, which 
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Figure 10.15. The cir cuit to determine the order of 2mod15, excluding the 

IQFT, created using IBM Quantum.
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is what we started with. Similarly, multiplying 2 by 16mod15 produces 

32mod15 = 2 ( because 32 divided by 15 is 2 remainder 2), which again is what 

we started with. No  matter what number we multiply by 16mod15, we get 

back the number we started with ( because  we’re actually multiplying by 

1 = 16mod15). So the cir cuit is completed with the IQFT and  measurement of 

the eigenvalue register (Fig. 10.16).

The CNOTs, which form the controlled U, and the controlled SWAPs, 

which form the controlled U2, are the only ele ments of the cir cuit that are spe-

cific to U. The rest of the cir cuit is the same for modular multiplication by 4, 

7, 8, 11, and 13.

So let’s figure out the controlled U and controlled U2 for modular multi-

plication by 4, U||J〉〉 = ||4Jmod15〉〉. The complete cir cuit is shown in Fig. 10.17 

(this cir cuit, and the remaining cir cuits in this chapter,  were constructed and 

run on IBM Quantum by my student, Kristen Gram).

Again, the controlled U consists of two CNOT gates, which now turn 

1  = ||0001〉〉 into ||4〉〉 = ||0100〉〉. For this U, U2  doesn’t do anything. U is multi-

plication by 4mod15, so U2 is multiplication by 42 = 16mod15. We already 

saw the multiplication by 16mod15  doesn’t do anything.

Next, the cir cuit for U||J〉〉 = ||7Jmod15〉〉 is shown in Fig. 10.18. The CNOTs 

form the controlled U, which changes 1  = ||0001〉〉 into ||7〉〉 = ||0111〉〉. The 

controlled U2 needs to multiply  either 1  or ||7〉〉 by 72mod15. Since 

72mod15 = 49mod15 = 4, multiplication by 72mod15 is the same as multipli-

cation by 4mod15. So 1  needs to change to ||4〉〉, and ||7〉〉 needs to change to 

||4 × 7mod15〉〉 = ||28mod15〉〉 = ||13〉〉. The first controlled SWAP changes 1  = ||0001〉〉 
to ||4〉〉 = ||0100〉〉, and the second controlled SWAP changes ||7〉〉 = ||0111〉〉 to ||13〉〉  
= ||1101〉〉.
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Figure 10.16. The cir cuit to determine the order of 2mod15, created using 

IBM Quantum. Originally published in Jed Brody and Kristen Gram, 

“Factoring 15 with a Remote Quantum Computer: A Complete Guide for 

Beginners,”  European Journal of Physics, April 2024, https:// iopscience . iop 

. org / article / 10 . 1088 / 1361 - 6404 / ad32dc /pdf,  under open license CC BY 4.0.

https://iopscience.iop.org/article/10.1088/1361-6404/ad32dc/pdf
https://iopscience.iop.org/article/10.1088/1361-6404/ad32dc/pdf
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Next is the cir cuit for U||J〉〉 = ||8Jmod15〉〉, shown in Fig. 10.19. The CNOTs 

form the controlled U, which changes 1  = ||0001〉〉 into ||8〉〉 = ||1000〉〉. The con-

trolled U2 multiplies by 82mod15 = 64mod15 = 4mod15. The controlled U2 

needs to be able to act on  either 1  or ||8〉〉. If it acts on 1 , it changes 1  = ||0001〉〉 
to ||4〉〉 = ||0100〉〉. The first controlled SWAP implements this. If U2 acts on ||8〉〉, 
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Figure 10.17. The cir cuit to determine the order of 4mod15, created using 

IBM Quantum. Originally published in Jed Brody and Kristen Gram, 

“Factoring 15 with a Remote Quantum Computer: A Complete Guide for 

Beginners,”  European Journal of Physics, April 2024, https:// iopscience . iop 

. org / article / 10 . 1088 / 1361 - 6404 / ad32dc /pdf,  under open license CC BY 4.0.
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Figure 10.18. The cir cuit to determine the order of 7mod15, created using 

IBM Quantum. Originally published in Jed Brody and Kristen Gram, 

“Factoring 15 with a Remote Quantum Computer: A Complete Guide for 

Beginners,”  European Journal of Physics, April 2024, https:// iopscience . iop 

. org / article / 10 . 1088 / 1361 - 6404 / ad32dc /pdf,  under open license CC BY 4.0.

https://iopscience.iop.org/article/10.1088/1361-6404/ad32dc/pdf
https://iopscience.iop.org/article/10.1088/1361-6404/ad32dc/pdf
https://iopscience.iop.org/article/10.1088/1361-6404/ad32dc/pdf
https://iopscience.iop.org/article/10.1088/1361-6404/ad32dc/pdf
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it changes ||8〉〉 = ||1000〉〉 to ||32mod15〉〉 = ||2〉〉 = ||0010〉〉. The second controlled 

SWAP implements this.

Next up is U||J〉〉 = ||11Jmod15〉〉, in Fig.  10.20. The CNOTs are the con-

trolled U, which is able to change 1  = ||0001〉〉 to ||11〉〉 = ||1011〉〉. Since 112mod15 =  

121mod15 = 1, U2 effectively is a multiplication by 1, which can be ignored.
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Figure 10.19. The cir cuit to determine the order of 8mod15, created using 

IBM Quantum. Originally published in Jed Brody and Kristen Gram, 

“Factoring 15 with a Remote Quantum Computer: A Complete Guide for 

Beginners,”  European Journal of Physics, April 2024, https:// iopscience . iop 

. org / article / 10 . 1088 / 1361 - 6404 / ad32dc /pdf,  under open license CC BY 4.0.
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Figure 10.20. The cir cuit to determine the order of 11mod15, created using 

IBM Quantum. Originally published in Jed Brody and Kristen Gram, 

“Factoring 15 with a Remote Quantum Computer: A Complete Guide for 

Beginners,”  European Journal of Physics, April 2024, https:// iopscience . iop 

. org / article / 10 . 1088 / 1361 - 6404 / ad32dc /pdf,  under open license CC BY 4.0.

https://iopscience.iop.org/article/10.1088/1361-6404/ad32dc/pdf
https://iopscience.iop.org/article/10.1088/1361-6404/ad32dc/pdf
https://iopscience.iop.org/article/10.1088/1361-6404/ad32dc/pdf
https://iopscience.iop.org/article/10.1088/1361-6404/ad32dc/pdf
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Last, we have U||J〉〉 = ||13Jmod15〉〉 in Fig. 10.21. The controlled U is im-

plemented by the CNOTs, which may change 1  = ||0001〉〉 to ||13〉〉 = ||1101〉〉. 
The controlled U2 needs to be able to multiply  either 1 or 13 by 132mod15 =  

169mod15 = 4mod15. So U2 changes 1  = ||0001〉〉 to ||4〉〉 = ||0100〉〉, which is 

achieved by the first controlled SWAP. U2 changes ||13〉〉 = ||1101〉〉 to ||52mod15〉〉  
= ||7〉〉 = ||0111〉〉, which is achieved by the second controlled SWAP.

 We’ve just seen six order- finding cir cuits, designed to find the order r of 

2mod15, 4mod15, 7mod15, 8mod15, 11mod15, and 13mod15. All six cir-

cuits  were run on the IBM Quantum pro cessor called ibm_perth. Figure 10.22 

gives the results for 2mod15.

q[0]

q[1]

q[2]

q[3]

q[4]

q[5]

q[6]

c3

H

H

H

H

P
(-pi / 2)

P
(-pi / 4)

H

P
(-pi / 2)

H

0 1 2

Figure 10.21. The cir cuit to determine the order of 13mod15, created using 

IBM Quantum. Originally published in Jed Brody and Kristen Gram, 

“Factoring 15 with a Remote Quantum Computer: A Complete Guide for 

Beginners,”  European Journal of Physics, April 2024, https:// iopscience . iop 

. org / article / 10 . 1088 / 1361 - 6404 / ad32dc /pdf,  under open license CC BY 4.0.
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Figure 10.22. Results from the cir cuit in Fig. 10.16, created using IBM 

Quantum.
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The dominant results are 000, 010, 100, and 110. (The small frequencies 

of the other results are due to experimental error, and do not occur in simu-

lations.) So the pos si ble values of j = s/r, where s is a  whole number less than r, 

are 0.000 = 0/4, 0.010 = 1/4, 0.100 = 2/4, and 0.110 = 3/4. We conclude that 

r = 4 is the order of 2mod15. 4 indeed is the smallest r that gives 2rmod15 = 1, 

so the cir cuit works! This seems like a lot of trou ble over a  little bit of arith-

metic, but  we’ve actually just implemented Shor’s algorithm (the quantum 

part, at least)! In the next chapter,  we’ll see how the order of 2mod15 is re-

lated to factoring 15.

The  measured results for 7mod15, 8mod15, and 13mod15 look much like 

the results for 2mod15. I  won’t show all the results  because they all look the 

same: Neglecting error, the results are 000, 010, 100, and 110. So s/r again is 

0/4, 1/4, 2/4, or 3/4, and r = 4. We can confirm that the order of 7mod15, 

8mod15, and 13mod15 is 4: 74mod15 = 84mod15 = 134mod15 = 1.

The results are dif fer ent for 4mod15 (Fig. 10.23). Now, the results are 

000 and 100, neglecting error. So the pos si ble values of s/r are 0.000 and 

0.100 = 1/2. This means that r = 2. Indeed, 42mod15 = 1, so 2 is the order of 

4mod15. Similar results are obtained for 11mod15, indicating that the order 

of 11mod15 is also 2.

Figure 10.23. Results from the cir cuit in Fig. 10.17, created using IBM 

Quantum.
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The Farthest Shor
Breaking the Internet

A
t long last, beneath moonlit clouds, we splash into the shallows and 

stagger to the Shor. The farthest Shor. Shor’s factoring algorithm. We 

drop to our knees and kiss the damp sand, remembering the roaring 

perils of our voyage. We would like nothing more than to unstrap our dented 

armor and rest, but what can heroes do? We pluck the arrows out of our 

wooden shields and continue our adventure.

Shor’s factoring algorithm is a quantum menace to an internet security 

protocol called Rivest- Shamir- Adleman (RSA) encryption. RSA encryption is 

based on the inability of classical computers to  factor extremely large num-

bers. Rather, classical computers can  factor extremely large numbers, but it 

takes years, and by then you have a new credit card number, so it  doesn’t 

 matter if a hacker decrypts your old one.

RSA encryption is based on number theory, a branch of mathe matics that 

seems absolutely useless, but it keeps all our data safe. Recall that AmodN is 

the remainder when A is divided by N.  Here are some facts proven in number 

theory:

 (A + B)modN = (AmodN + BmodN)modN. (11.1)

For example, if we want to know the remainder when 37 + 64 is divided 

by 15, it’s a  little easier to first find the remainders when 37 and 64 are 

 separately divided by 15: (37 + 64)mod15 = (37mod15 + 64mod15)mod15 =  

(7 + 4)mod15 = 11.

What about the remainder when 37 × 64 is divided by 15? We definitely 

 don’t want to do this in our head.  Unless we use this rule:

 (A × B)modN = (AmodN × BmodN)modN. (11.2)

So (37 × 64)mod15 = (37mod15 × 64mod15)mod15 = (7 × 4)mod15 = 28mod15  

= 13.
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 Here’s another fact: For any prime number P and any number X that is 

not divisible by P,

 XP − 1modP = 1. (11.3)

This is called Fermat’s  little theorem, and RSA encryption depends on it. Let’s 

confirm that Eq. (11.3) works for P = 3 and X values of 2, 4, 5 and 7:

22mod3 = 1

42mod3 = 1

52mod3 = 1

72mod3 = 1

All  these equations are true.

Now,  we’re ready for RSA encryption. Suppose that Clytemnestra wants 

to receive information from Agamemnon, and she wants it to be encrypted so 

that an eavesdropper  can’t pry into their (rather lurid) personal life. Clytem-

nestra chooses two extremely large prime numbers, P and Q. Then she multi-

plies them together and calculates

 N = PQ. (11.4)

Then she makes N public! She makes no attempt to hide it! Classical comput-

ers  can’t  factor N (within a reasonable time frame), so only Clytemnestra 

knows P and Q, even  after she broadcasts the number N.

Next, Clytemnestra chooses a number E that is less than (P − 1)(Q − 1), 

and that has no common  factors with (P − 1)(Q − 1). She makes E public too. 

N and E are called the public key.

Then, Clytemnestra secretly calculates the D that satisfies

 DEmod[(P − 1)(Q − 1)] = 1. (11.5)

 There is an efficient  process to determine D, called the extended Euclidean al-

gorithm. (Perhaps Clytemnestra learned it from Euclid himself.) But only 

Clytemnestra can determine D  because only she knows P and Q. D is the pri-

vate key.

Equation (11.5) says that when the product DE is divided by (P − 1)(Q − 1), 

the remainder is 1. In other words, DE is 1 plus some integer times (P − 1)(Q − 1). 

Let’s call the integer L, so

 DE = 1 + L(P − 1)(Q − 1). (11.6)

Meanwhile, Agamemnon composes his message to his wife, and he converts 

the message to some integer A (which must be less than N). Perhaps Agamem-

non first represents each letter with five bits, so a = 00001, b = 00010, 

c = 00011,  etc. So if Agamemnon’s message is “cab,” A = 000110000100010 

= 2048 + 1024 + 32 + 2 = 3106. Although it takes some work to convert 3106 

back to cab, A is not yet encrypted. Agamemnon’s method to convert letters to 

numbers is perhaps too obvious. So Agamemnon computes the cipher
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 C = AEmodN, (11.7)

using the public key, N and E. Then he sends this to Clytemnestra.

Only Clytemnestra knows D, so only Clytemnestra can compute  

CDmodN, which she decides to do. Using Eq. (11.7),

 CDmodN = ADEmodN. (11.8)

How can we simplify this? We need half a page of algebra.  Here goes. 

We start by writing Fermat’s  little theorem, Eq. (11.3), choosing X = AQ − 1:

 (AQ − 1)P − 1modP = A(Q − 1)(P − 1)modP = 1. (11.9)

Eq. (11.9) says that the remainder is 1 when A(Q − 1)(P − 1) is divided by P. In other 

words, A(Q − 1)(P − 1) is 1 plus some integer times P. Let’s call this integer U, so

 A(Q − 1)(P − 1) = 1 + UP. (11.10)

Now let’s write Fermat’s  little theorem again, substituting Q for P, and 

choosing X = AP − 1:

 (AP − 1)Q − 1modQ = A(P − 1)(Q − 1)modQ = 1. (11.11)

Equation (11.11) says that the remainder is 1 when A(P − 1)(Q − 1) is divided by 

Q, so A(P − 1)(Q − 1) is 1 plus some integer times Q. Choosing V for the integer,

 A(P − 1)(Q − 1) = 1 + VQ. (11.12)

Combining Eqs. (11.10) and (11.12),

 UP = VQ. (11.13)

A multiple of P is a multiple of Q. Since P and Q are both prime numbers, 

neither one is a multiple of the other. The only way a multiple of P can be a 

multiple of Q is if both sides of Eq. (11.13) are in fact multiples of the prod-

uct PQ. So

 UP = VQ = WPQ, (11.14)

where W is yet another integer. Substituting Eq. (11.14) into Eq. (11.12),

 A(P − 1)(Q − 1) = 1 + WPQ = 1 + WN (11.15)

 because N is PQ, the product of the two prime numbers.

Now, let’s go all the way back to Eq. (11.8): CDmodN = ADEmodN. This 

is what we wanted to simplify. This is the value that only Clytemnestra can 

calculate  because only she knows the private key D. Replacing DE with 

Eq. (11.6),

 CDmodN = A1 + L(P − 1)(Q − 1)modN. (11.16)

On the right side, we have one  factor of A, and L  factors of A(P − 1)(Q − 1):

 CDmodN = A × [A(P − 1)(Q − 1)]LmodN. (11.17)
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Next, we use Eq. (11.15):

 CDmodN = A × [1 + WN]LmodN. (11.18)

Then using Eq. (11.2), we can copy modN onto each  factor:

 CDmodN = {AmodN × [(1 + WN)modN]L}modN. (11.19)

When 1 + WN is divided by N, the result is W remainder 1. So 

(1 +  WN) modN = 1, and Eq. (11.19) simplifies all the way to

 CDmodN = AmodN = A. (11.20)

AmodN = A  because A is less than N. So when Clytemnestra uses the private 

key D to compute CDmodN, she obtains Agamemnon’s secret message A.

Let’s take an example. Suppose Clytemnestra chooses P = 59 and Q = 61. 

If she wanted the encryption to be secure, P and Q would have to be much 

larger, but let’s use small numbers in this example. Clytemnestra computes 

the product N = 3599 and makes this public.  We’ll pretend that nobody 

knows how to  factor N to determine P and Q. Clytemnestra then chooses 

E = 7 and makes this public too.

Clytemnestra then uses the extended Euclidean algorithm to solve for D 

in DEmod(P − 1)(Q − 1) = 1, so 7Dmod3480 = 1. She finds D = 2983. (You can 

compute this at wolframalpha . com by typing “inverse of 7mod3480.”)

Agamemnon has composed his message, A = 3106. Then he computes the 

cipher C = AEmodN = 31067mod3599 = 565. (You can do this and all similar 

computations at wolframalpha . com too.) He transmits the cipher to Clytem-

nestra. If an eavesdropper obtained the cipher,  they’d be unable to make heads 

or tails of it  because they  don’t know the private key, D. Only Clytemnestra 

can use D to compute CDmodN = 5652983mod3599 = 3106. She has success-

fully obtained Agamemnon’s secret message.

If an eavesdropper is able to  factor N into P and Q, then they are able to 

calculate D just as Clytemnestra does, and thereby decrypt the cipher just as 

Clytemnestra does. So the security of RSA encryption depends on the impos-

sibility of factoring N.

This is how Shor’s algorithm  factors N:

1. Randomly choose some integer X that’s less than N, and more than 1. 

Test  whether X contains a  factor of N. ( There’s an efficient way to do 

this, called Euclid’s algorithm, related to the extended Euclidean al-

gorithm.  We’ll learn Euclid’s algorithm  later.) If X contains a  factor of 

N, congratulations!  You’ve factored N! Other wise, if X contains no 

 factors of N, proceed with Shor’s algorithm.

2. Use the order- finding cir cuit to find the order r of XmodN. This is the 

only step that requires a quantum computer. Recall that r is the small-

est positive integer such that XrmodN = 1.
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3. If the order r is odd, or if Xr/2modN = N − 1, return to step 1 to pick a 

dif fer ent X.

4. Other wise, find the greatest common divisor of Xr/2 − 1 and N, and of 

Xr/2 + 1 and N.  These are the  factors of N.

Let’s see why this  process does indeed reveal the  factors of N. It’s breath-

taking that order- finding has anything to do with factoring, but it does! 

Order- finding is actually just what we need to  factor a product of two prime 

numbers.

Since r is the order of XmodN, XrmodN = 1. Since Xr divided by N has a 

remainder of 1, Xr − 1 must be evenly divisible by N:

 (Xr − 1)modN = 0. (11.21)

Recall the “difference of two squares formula,” (a + b)(a − b) = a2 − b2. Using 

a = Xr/2 and b = 1, Eq. (11.21) becomes

 (Xr/2 + 1)(Xr/2 − 1)modN = 0. (11.22)

This says that the product (Xr/2 + 1)(Xr/2 − 1) is evenly divisible by N.  There 

are three ways this can happen:

• Xr/2 + 1 is divisible by N.

• Xr/2 − 1 is divisible by N.

• Neither Xr/2 + 1 nor Xr/2 − 1 is divisible by N. Instead, Xr/2 + 1 is a multi-

ple of one prime  factor of N, and Xr/2 − 1 is a multiple of the other prime 

 factor of N. For example, if N is 15, Xr/2 could be 169, as  we’ll see. Then 

Xr/2 + 1 is 170, which is a multiple of 5, and Xr/2 − 1 is 168, which is a 

multiple of 3. Thus (Xr/2 + 1)(Xr/2 − 1) is a multiple of 15  because 5 is 

 factor of the first term in parentheses, and 3 is a  factor of the second.

 We’ll now show that the first two bullet points are impossible, so the third 

bullet point is the only possibility.

According to the first bullet point, Xr/2 + 1 is divisible by N, or in other 

words, Xr/2 + 1 is a multiple of N. This means that Xr/2 is 1 less than a multiple 

of N: Xr/2 is N − 1 or 2N − 1 or 3N − 1,  etc. Notice that if any of  these is di-

vided by N, the remainder is N − 1. For example, if 3N − 1 is divided by N, the 

result is 2N, remainder N − 1. So if Xr/2 is divided by N, the remainder is 

N − 1, so Xr/2modN = N − 1. But this is specifically rejected by step 3 in Shor’s 

algorithm. So Xr/2 + 1 must not be divisible by N.

According to the second bullet point, Xr/2 − 1 is a multiple of N, so Xr/2 is 

1 more than a multiple of N. So Xr/2 is N + 1 or 2N + 1 or 3N + 1,  etc. So when 

Xr/2 is divided by N, the remainder is 1: Xr/2modN = 1. But this would mean 

that r/2, not r, is the order of XmodN: The order is the smallest exponent 

that gives a remainder of 1. Since r is the order of XmodN, Xr/2modN cannot 

be 1, so Xr/2 − 1 cannot be a multiple by N.
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 We’re left with only the third bullet point, which guarantees that Xr/2 + 1 

and Xr/2 − 1 each contain a  factor of N. So our goal is achieved:  We’ve ob-

tained the  factors of N.

Now let’s see how our data from the previous chapter  factors 15. We used 

the order- finding cir cuit to find the order of 2mod15, 4mod15, 7mod15, 

8mod15, 11mod15, and 13mod15. In fact,  these are all six choices of Xmod15 

that can be used to  factor 15 with a quantum computer. X  can’t be 3, 5, 6, 9, 

or 10  because  these numbers contain  factors of N. (If we picked one of  these 

values of X, Euclid’s algorithm would immediately  factor 15 without needing 

to use Shor’s algorithm.) X  can’t be 14  because we would find that the order 

of 14mod15 is 2, and 142/2mod15 = 14 = 15 − 1, which is specifically excluded 

by the third step in Shor’s algorithm. If we tried to proceed with X = 14 and 

r = 2, the final step would give 14 + 1 = 15 and 14 − 1 = 13, which do not sepa-

rately contain the two  factors of 15.

Let’s choose X = 2. We already have the necessary data. In the previous 

chapter, we used a quantum pro cessor to find that the order or 2mod15 is 

r = 4. So the final step of Shor’s algorithm gives 24/2 + 1 = 5 and 24/2 − 1 = 3, the 

two  factors of 15. Immediate success!

Next, we choose X = 4. In the previous chapter, our data from a real quan-

tum pro cessor indicated that the order of 4mod15 is r = 2. So the final step of 

Shor’s algorithm gives 42/2 + 1 = 5 and 42/2 − 1 = 3. Another immediate success!

Next, X = 7. Our order- finding cir cuit indicated that the order of 7mod15 

is r = 4. So the final step of Shor’s algorithm gives 74/2 + 1 = 50 and 74/2 − 1 = 48. 

We might notice that 50 contains a  factor of 5, and 48 contains a  factor of 3. 

But suppose we  didn’t spot this right away. In this case, we use Euclid’s algo-

rithm to extract the  factors of 15 from 50 and 48.

First,  we’ll use Euclid’s algorithm to find the greatest common divisor of 

50 and 15. Euclid’s algorithm is simply this: Replace the larger of the two num-

bers with the difference between them. Repeat this  process  until the two 

numbers are the same. So the steps of the  process are the following:

50 15

35 15 replacing 50 with 50 − 15

20 15 replacing 35 with 35 − 15

5 15 replacing 20 with 20 − 15

5 10 replacing 15 with 15 − 5

5 5 replacing 10 with 10 − 5

So we obtain 5, one of the  factors of 15. We then apply Euclid’s algorithm to 

extract the other  factor of 15 from 48:

48 15

33 15 replacing 48 with 48 − 15

18 15 replacing 33 with 33 − 15

3 15 replacing 18 with 18 − 15
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3 12 replacing 15 with 15 − 3

3 9 replacing 12 with 12 − 3

3 6 replacing 9 with 9 − 3

3 3 replacing 6 with 6 − 3

Shor’s algorithm again succeeds, though it requires some classical calculations 

 after obtaining the order of 7mod15 from the quantum cir cuit.

Next,  we’ll try 8mod15. Our order- finding cir cuit indicated that the order 

of 8mod15 is r = 4. The final step of Shor’s algorithm gives 84/2 + 1 = 65 and 

84/2 − 1 = 63. Euclid’s algorithm extracts the  factors of 15 from  these two 

numbers.

For 11mod15, our order- finding cir cuit gave us r = 2. The final step of 

Shor’s algorithm gives 112/2 + 1 = 12 and 112/2 − 1 = 10, which separately con-

tain the two  factors of 15.

Last, our order- finding cir cuit determined that the order of 13mod15 is 

r = 4. Shor’s algorithm gives 134/2 + 1 = 170 and 134/2 − 1 = 168. From  these 

two numbers, Euclid’s algorithm extracts the prime  factors of 15.

When using Shor’s algorithm to  factor 15, we determine the order r of 

Xmod15, where r turns out to be  either 2 or 4. Recall that the raw data from 

the order- finding cir cuits gives us s/r as binary fractions. So if s/r = 1/2, the 

binary fraction is 0.1, and if s/r = 1/4, the binary fraction is 0.01.

 There are two kinds of fractions,  those that can be represented by termi-

nating decimals, and  those that must be represented by repeating decimals. In 

base ten, 1/4 = 0.25 is a terminating decimal  because 0.25 is exactly equal to 

1/4. On the other hand, 1/3 = 0.333333 . . .  is a repeating decimal  because we 

need an infinite number of digits to represent 1/3 exactly. The general rule in 

base ten is that the decimal is terminating if the denominator contains  factors 

of only 2 and 5, the  factors of 10. (I learned this from my eleventh- grade math 

teacher. It blew my mind that I’d been unacquainted with such a basic fact of 

arithmetic.) So, for example, 50 = 2 × 5 × 5 contains  factors of only 2 and 5, so 

1/50 is a terminating decimal, 0.02. On the other hand, 30 contains a  factor 

of 3, so 1/30 is a repeating decimal, 0.0333333 . . . .

In base two, fractions are terminating only if the denominator is a power 

of 2: 2, 4, 8, 16,  etc. When we factored 15, we  were lucky that the order r was 

always a power of 2. But what if r is any other number, like 6, which cannot 

be represented exactly as a binary fraction?

Suppose  we’re using Shor’s algorithm to  factor 21. Since 21 = 10101, we 

need five qubits to represent 21 in the eigenstate register. Let’s also have five 

qubits in the eigenvalue register. So our  measurements  will yield five- bit 

numbers. Suppose we run the order- finding cir cuit to determine the order of 

2mod21. When the eigenvalue register is  measured, about 1/6 of the time 

we get 00000, about 1/6 of the time we get 00101, about 1/6 of the time we 

get 01011, about 1/6 of the time we get 10000, about 1/6 of the time we get 

10101, and about 1/6 of the time we get 11011. ( These are the results that 
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would be expected in theory; I  didn’t actually run the cir cuits. Though you 

may if you like.) How do we extract the order of 2mod21 from  these six 

results?

First, we recall that the results represent binary fractions, so we put 0 and 

a decimal point in front of each:

00000 indicates 0.00000 = 0

00101 indicates 0.00101 = 1/8 + 1/32 = 5/32

01011 indicates 0.01011 = 1/4 + 1/16 + 1/32 = 11/32

10000 indicates 0.10000 = 1/2

10101 indicates 0.10101 = 1/2 + 1/8 + 1/32 = 21/32

11011 indicates 0.11011 = 1/2 + 1/4 + 1/16 + 1/32 = 27/32

So our  measured results are effectively 0, 5/32, 11/32, 1/2, 21/32, and 27/32. 

The biggest denominator is 32, but that is not the order of 2mod21. The big-

gest denominator is 32 simply  because we have five fractional bits, and 0.00001 

is 1/32. In fact, 5/32 and the other fractions may be only approximations to 

s/r, where r is what we want, the order of 2mod21 (and s is a  whole number 

less than r).

So how do we determine what fraction is approximated by 5/32? The first 

step is to “flip and split”  until all numerators are 1. Specifically, we first flip 

5/32 by writing 1 over its reciprocal:

5

32
=

1
32

5

Then we split the improper fraction into an integer plus a proper fraction:

5

32
=

1
32

5

=
1

6 +
2

5

Then we repeat the  process with the new proper fraction, 2/5. We flip:

5

32
=

1
32

5

=
1

6 +
2

5

=
1

6 +
1
5

2

Last, we split the improper fraction 5/2 into an integer plus a proper fraction:

5

32
=

1
32

5

=
1

6 +
2

5

=
1

6 +
1
5

2

=
1

6 +
1

2 +
1

2

 We’ve completed the first step  because all numerators are now 1. Fun, right? 

So far, we  haven’t done any approximations. Every thing is exact so far.
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To find what 5/32 might approximate, we drop what comes  after the last +, 

which is 1/2:

5

32
≈ 1

6 +
1

2

=
1

13

2

=
2

13

So, possibly, 5/32 is an approximation to 2/13. So possibly, 2/13 = s/r. Does 

r = 13? We simply test  whether 213mod21 is 1. It is not, so 2/13 is not the 

correct value. We proceed to further simplify the fraction by again dropping 

what comes  after +:

5

32
≈ 1

6 +
1

2

≈ 1

6

Does 1/6 = s/r? Let’s test if the order of 2mod21 is 6: 26mod21 = 1, so r = 6 is 

correct. At this point we can complete the final step of Shor’s algorithm: 

26/2 + 1 = 9 and 26/2 − 1 = 7, where 7 is one of  factor 21, and 9 contains the 

other  factor.

For more practice, let’s see if we can  factor 21 with the other expected 

results (11/32, 1/2, 21/32, and 27/32). For 11/32, we flip:

11

32
=

1
32

11

Then split:

11

32
=

1
32

11

=
1

2 +
10

11

Then flip 10/11:

11

32
=

1
32

11

=
1

2 +
10

11

=
1

2 +
1
11

10

Then split 11/10:

11

32
=

1
32

11

=
1

2 +
10

11

=
1

2 +
1
11

10

=
1

2 +
1

1+
1

10

All numerators are 1, so the first  process is complete.

Then, we drop the fraction  after the final +:

11

32
≈ 1

2 +
1

1

=
1

3
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Could s/r = 1/3? If we test r = 3, we find that 23mod21 is not 1, so the order of 

2mod21 is not 3. But perhaps s/r is indeed 1/3, and s is not 1. The next sim-

plest guess for s is s = 2, so r = 6, which is the correct order of 2mod21.

The next expected result is 1/2. We  don’t have to simplify this; it’s already 

 simple. Does s/r = 1/2? We first try r = 2, which  doesn’t work. If s = 2, r = 4, 

which still  doesn’t work. Next, we try s = 3, so r = 6, which is correct.

Next, 21/32. If we flip and split  until all numerators are 1, we find

21

32
=

1

1+
1

1+
1

1+
1

10

Then we drop the fraction, 1/10,  after the last +, to see what 21/32 

approximates:

21

32
≈ 1

1+
1

1+
1

1

=
1

1+
1

2

=
1
3

2

=
2

3

Does s/r = 2/3? If we try r = 3, that is not correct. But if we then try s = 2 so 

r = 6, that is correct.

Last, 27/32:

27

32
=

1

1+
1

5 +
1

2 +
1

2

We drop the 1/2  after the last +:

27

32
≈ 1

1+
1

5 +
1

2

=
1

1+
1
11

2

=
1
13

11

=
11

13

Could s/r = 11/13? r = 13 is not correct. Setting s = 2, so r = 26, just makes it 

worse: The order of 2mod21 cannot be larger than 21  because  there are only 

21 pos si ble remainders when a number is divided by 21. So we further sim-

plify the fraction by dropping the 1/2  after the last plus sign in 
1

1+
1

5 +
1

2

:

27

32
≈ 1

1+
1

5

=
1
6

5

=
5

6
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Could s/r = 5/6? Yes, r = 6 is correct.

The larger the number N that  we’re factoring, the more qubits we need. 

The eigenstate register needs enough qubits to represent the number N. If N 

is a huge number, hundreds of digits long, as in practical RSA encryption, we 

need a lot of qubits. The eigenvalue register needs even more qubits. To en-

sure that the eigenvalue is estimated with sufficient precision, the eigenvalue 

register should have enough qubits to count up to N2. (In the preceding ex-

ample, I used the same number of qubits in both registers, just to keep the 

arithmetic from getting too unwieldy.)

So that’s Shor’s algorithm. Why  hasn’t it broken the internet yet? So far, 

quantum computers are too small (too few qubits) and noisy (too much error). 

Potentially  these shortcomings can be overcome, but by then we may use clas-

sical cryptosystems that are invulnerable to quantum attacks. If all  else fails, 

quantum key distribution, from Chapter 1, is invulnerable to quantum attacks. 

So  we’ve come full circle and have now examined both edges of this double- 

edged sword: Quantum information science menaces classical cryptography 

while also furnishing a  viable alternative to it.

Experts debate  whether quantum computers  will revolutionize technol-

ogy or remain an academic curiosity. On this question, I  don’t have much of 

an opinion, or even a preference. I do think it’s likely that quantum comput-

ers  will help chemists simulate molecules to engineer new drugs and nanoma-

terials. In any case, the joy of learning quantum computing is its own reward, 

even if  there’s  little practical benefit beyond leveling up our nerdiness.
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Chapter 12

How to Correct  Those 
Flipping Errors

W
e’ve seen that real quantum pro cessors do not quite live up to ex-

pectations. The results deviate from theory. As quantum cir cuits 

grow in size, the errors accumulate and snowball,  until the results 

are no better than random numbers. And yet quantum cir cuits need to be large 

to confer any quantum advantage,  because small quantum cir cuits can be ef-

ficiently simulated by classical computers. So the beast of quantum error must 

be vanquished. To that end, we have quantum error correction, a deep subject 

of active research. We  will dip only one toe in  these choppy  waters.

The error in quantum results can arise in a variety of ways.  There is read-

out error, which means that sometimes a 0  is  measured as a 1 instead of 0, 

and vice versa.  There is error in the quantum gates, which means that the 

X gate, for example, does not reliably convert 0  to 1 . And sometimes the qu-

bits just mutate, changing from 0 , for example, to something  else. The cause 

of this error is called quantum decoherence, which we  will return to in our 

final chapter. We  will see that quantum decoherence sheds light not only on 

naughty qubits but also on Schrödinger’s famously unfortunate cat.

One kind of quantum error is called a bit flip, which means that 0  flips 

to 1 , and 1  flips to 0 . So if a qubit is in a general state α 0  + β 1 , and it 

undergoes a bit flip, it becomes α 1  + β 0 . Let’s look at a cir cuit that both 

detects and corrects the bit flip (Fig. 12.1).

We want to protect the top qubit from a pos si ble bit- flip error. The first 

step is to entangle it with two additional qubits.  After the first two CNOT 

gates, the state of the three qubits is α||000〉〉 + β||111〉〉. This means that ||000〉〉 
represents 0 , and ||111〉〉 represents 1 . We  haven’t cloned our qubit into the 

state (α 0  + β 1 )(α 0  + β 1 )(α 0  + β 1 ); the no- cloning theorem forbids it. 

Still,  we’ve effectively backed up our data twice. One of the three qubits may 

be corrupted by error, but the other two are likely to remain uncorrupted, as 

long as the error rate is reasonably low. The error symbol in the cir cuit dia-

gram indicates that one of the three qubits may undergo a bit- flip error, but 
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we  don’t know which one. The rest of the cir cuit detects the corrupted qubit 

and restores it to its rightful state.

The bottom two qubits determine which qubit, if any, is corrupted. Let’s 

see how. If the top qubit undergoes a bit- flip error, the state of the top three 

qubits changes from α||000〉〉 + β||111〉〉 to α||001〉〉 + β||110〉〉. Adding in the bot-

tom two qubits, the state is α||00001〉〉 + β||00110〉〉. The first CNOT ( after 

“Error!”) makes this α||01001〉〉 + β||00110〉〉, which the second CNOT turns 

into α||01001〉〉 + β||01110〉〉, which the third CNOT turns into α||01001〉〉 +  

β||11110〉〉, which the fourth CNOT turns into α||01001〉〉 + β||01110〉〉 = ||01〉〉
(α||001〉〉 + β||110〉〉). Evidently, when the top qubit undergoes a bit- flip error, the 

bottom two qubits go into the state ||01〉〉. Similarly, we can show that a bit- 

flip error in the second- from- top qubit makes the bottom two qubits ||11〉〉, 
and a bit- flip error in the third- from- top qubit makes the bottom two qubits 

||10〉〉. If  there is no error, then the bottom two qubits remain ||00〉〉. So the loca-

tion of any bit- flip error is specified by the bottom two qubits.

The last three gates correct the error.  These are doubly controlled NOT 

gates, controlled by the bottom two qubits. The open circle indicates that the 

control must be 0  to cause the NOT to act on the target. So when the target 

is on the top qubit, the NOT acts only when the bottom two qubits are ||01〉〉. 
This is exactly the condition for an error on the top qubit, so ||01〉〉(α||001〉〉 +  

β||110〉〉) is corrected to ||01〉〉(α||000〉〉 + β||111〉〉). A similar  process corrects er-

rors on the next two qubits from the top.

A nearly identical cir cuit (Fig. 12.2) corrects a dif fer ent error, called the 

phase flip, which changes +  to − . We begin with a qubit in state α +  + β − . 

We want to entangle it with two other qubits, to create the state α||+ + +〉〉  
+ β||− − −〉〉. This is achieved by the gates before the Error: The first H transforms 

α +  + β −  to α 0  + β 1 . Just as in the previous cir cuit, the two CNOT gates 

create the state α||000〉〉 + β||111〉〉. Then the three H gates just before the Error 

transform the state to α||+ + +〉〉 + β||− − −〉〉.

α|0〉 + β|1〉

|0〉

|0〉

Error!

|0〉

|0〉 

Figure 12.1. Correcting a bit- flip error, created using the Quantikz LaTeX 

package, including some of the code in the Quantikz tutorial by Alastair 

Kay (https:// arxiv . org / pdf / 1809 .03842).

https://arxiv.org/pdf/1809.03842
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The Error symbol in this case represents a phase- flip error on one of the 

three qubits, at most. A phase- flip error on the top qubit, for example, makes 

the state α||+ + −〉〉 + β||− − +〉〉. The subsequent H gates change +  to 0  and −  to 

1 , so the state becomes α||001〉〉 + β||110〉〉. The error correction cir cuit then 

functions exactly as before, locating the corrupted qubit and correcting it. The 

final three H gates turn 0  back into +  and 1  back into − .

We might won der why quantum computers are so error- prone. Qubits 

are very fragile  little  things, susceptible to unwanted influences from their sur-

roundings, in the  process called quantum decoherence. To understand deco-

herence, we need the math that I’ve been putting off as long as pos si ble. But 

now, it’s time to descend to the deepest level of the dungeon, where the most 

valuable  treasure is fiercely guarded. It’s time to enter the matrix.

Some calculations  will become easier once you add matrices to your tool-

box (or spell book, to stick with the fantasy  metaphor). Some calculations 

 can’t be done any other way.

Figure 12.2. Correcting a phase- flip error, created using the Quantikz LaTeX 

package, including some of the code in the Quantikz tutorial by Alastair Kay 

(https:// arxiv . org / pdf / 1809 .03842).

α|+i + β|–i

|0i

|0i

|0i

|0i

H H H H

H H H

H H H

Error!

https://arxiv.org/pdf/1809.03842
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Chapter 13

Enter the Matrix

A 
matrix is a rectangular grid of numbers. For example,

1 0

0 − 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

This is a square matrix: two rows and two columns. The four num-

bers in the matrix are called matrix ele ments. In some books, a matrix is 

enclosed by curved brackets, (), instead of square brackets, []. It’s just an 

aesthetic choice.

If a matrix has only a single column, it’s usually called a column vector. 

For example:

0

1

⎡

⎣
⎢

⎤

⎦
⎥.

We can add two matrices of identical size and shape. We simply sum the 

corresponding ele ments. For example,

0

1

⎡

⎣
⎢

⎤

⎦
⎥ +

2

3

⎡

⎣
⎢

⎤

⎦
⎥ =

0 + 2

1+3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

2

4

⎡

⎣
⎢

⎤

⎦
⎥.

If a matrix (or vector) is multiplied by a single number (often called a scalar), 

we simply multiply each ele ment by that number. For example,

4
2

3

⎡

⎣
⎢

⎤

⎦
⎥ =

4 × 2

4 × 3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

8

12

⎡

⎣
⎢

⎤

⎦
⎥.

We can combine scalar multiplication with matrix (or vector) addition. For 

example,

4
2

3

⎡

⎣
⎢

⎤

⎦
⎥ + 5

0

1

⎡

⎣
⎢

⎤

⎦
⎥ =

4 × 2

4 × 3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

5 × 0

5 × 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

8

12

⎡

⎣
⎢

⎤

⎦
⎥ +

0

5

⎡

⎣
⎢

⎤

⎦
⎥ =

8

17

⎡

⎣
⎢

⎤

⎦
⎥.

We often want to multiply two matrices. This is more complicated than 

addition; we do not simply multiply the corresponding ele ments. When we 
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multiply two matrices, the order  matters: AB does not necessarily equal BA. 

Mathematicians call this noncommutativity, but it’s like putting on shoes and 

socks: If you put on your shoes first, and then your socks, the outcome is not 

the same as what you get by  doing  things in the usual order. In dressing one-

self as well as in matrix multiplication, the order  matters.

To perform the matrix multiplication AB, the numbers of columns of A 

must equal the number of rows of B. The product AB  will have the number of 

rows of A and the number of columns of B. For example, if A and B are both 

two- by- two square matrices, the product AB is also a two- by- two square ma-

trix. Taking another example, if A is a two- by- two matrix, and C is a column 

vector with two ele ments, then the product AC  will be the same size and shape 

as C (a column vector with two ele ments).

Let’s suppose

A =
1 2

3 4

⎡

⎣
⎢

⎤

⎦
⎥

and

B =
5 6

7 8

⎡

⎣
⎢

⎤

⎦
⎥.

The product AB has four ele ments, which we need to determine:

AB =
1 2

3 4

⎡

⎣
⎢

⎤

⎦
⎥

5 6

7 8

⎡

⎣
⎢

⎤

⎦
⎥ =

? ?

? ?

⎡

⎣
⎢

⎤

⎦
⎥.

The top left ele ment of AB is determined by the top row of A and the left 

column of B. The first ele ment of the top row of A is multiplied by the first 

ele ment of the left column of B: 1 × 5 = 5.

AB =
1 2

3 4

⎡

⎣
⎢

⎤

⎦
⎥

5 6

7 8

⎡

⎣
⎢

⎤

⎦
⎥ =

1 × 5 + ? ?

? ?

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

Then, the second ele ment of the top row of A is multiplied by the second ele-

ment of the left column of B: 2 × 7 = 14.

AB =
1 2

3 4

⎡

⎣
⎢

⎤

⎦
⎥

5 6

7 8

⎡

⎣
⎢

⎤

⎦
⎥ =

1× 5 + 2 × 7 ?

? ?

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

Then  these two products are summed: 5 + 14 = 19. This is the first ele ment of 

the product AB:

AB =
1 2

3 4

⎡

⎣
⎢

⎤

⎦
⎥

5 6

7 8

⎡

⎣
⎢

⎤

⎦
⎥ =

19 ?

? ?

⎡

⎣
⎢

⎤

⎦
⎥.

The top right ele ment of AB is determined by the top row of A and the right 

column of B, following similar rules:

AB =
1 2

3 4

⎡

⎣
⎢

⎤

⎦
⎥

5 6

7 8

⎡

⎣
⎢

⎤

⎦
⎥ =

19 1 × 6 + 2 × 8 = 22

? ?

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.
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The bottom left ele ment of AB is determined by the bottom row of A and the 

left column of B:

AB =
1 2

3 4

⎡

⎣
⎢

⎤

⎦
⎥

5 6

7 8

⎡

⎣
⎢

⎤

⎦
⎥ =

19 22

3× 5+ 4 × 7 = 43 ?

⎡

⎣
⎢

⎤

⎦
⎥.

Last, the bottom right ele ment of AB is determined by the bottom row of A 

and the right column of B:

AB =
1 2

3 4

⎡

⎣
⎢

⎤

⎦
⎥

5 6

7 8

⎡

⎣
⎢

⎤

⎦
⎥ =

19 22

43 3 × 6 + 4 × 8 = 50

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

Let’s apply exactly the same rules to determine the product BA:

BA =
5 6

7 8

⎡

⎣
⎢

⎤

⎦
⎥

1 2

3 4

⎡

⎣
⎢

⎤

⎦
⎥ =

5 × 1+ 6×3 = 23 5 × 2 + 6 × 4 = 34

7 × 1+ 8×3 = 31 7 × 2 + 8 × 4 = 46

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

We see that AB does not equal BA.

Now let’s choose

C =
5

6

⎡

⎣
⎢

⎤

⎦
⎥

and compute the product AC:

AC =
1 2

3 4

⎡

⎣
⎢

⎤

⎦
⎥

5

6

⎡

⎣
⎢

⎤

⎦
⎥ =

?

?

⎡

⎣
⎢

⎤

⎦
⎥ .

The top ele ment of AC is determined by the top row of A and the one col-

umn of C. The rule is similar to what we used  earlier. We work our way across 

the top row of A, while moving down the one column of C:

AC =
1 2

3 4

⎡

⎣
⎢

⎤

⎦
⎥

5

6

⎡

⎣
⎢

⎤

⎦
⎥ =

1 × 5 + 2 × 6 = 17

?

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

And the bottom ele ment of AC is determined by the bottom row of A and the 

one column of C:

AC =
1 2

3 4

⎡

⎣
⎢

⎤

⎦
⎥

5

6

⎡

⎣
⎢

⎤

⎦
⎥ =

17

3 × 5 + 4 × 6 = 39

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

Now we know how to multiply matrices. But so what? What does this 

have to do with quantum computing? Feast your eyes on this: We  will define

0 =
1

0

⎡

⎣
⎢

⎤

⎦
⎥

and

1 =
0

1

⎡

⎣
⎢

⎤

⎦
⎥.
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This means that a generic qubit can be written

α 0 + β 1 = α 1

0

⎡

⎣
⎢

⎤

⎦
⎥ + β 0

1

⎡

⎣
⎢

⎤

⎦
⎥ =

α
0

⎡

⎣
⎢

⎤

⎦
⎥ +

0

β
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 Every single- qubit gate can be written as a two- by- two matrix. For 

example,

Z =
1 0

0 −1
⎡

⎣
⎢

⎤

⎦
⎥.

Now the action of a gate on a qubit is simply matrix multiplication! We recall 

that Z 0  = 0 . Writing this as a matrix multiplication,

Z 0 =
1 0

0 −1
⎡

⎣
⎢

⎤

⎦
⎥

1

0

⎡

⎣
⎢

⎤

⎦
⎥ =

1× 1+ 0 × 0

0 × 1+ (−1) × 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

1

0

⎡

⎣
⎢

⎤

⎦
⎥ = 0 .

It works! How about Z 1 = − 1 ?

Z 1 =
1 0

0 −1
⎡

⎣
⎢

⎤

⎦
⎥

0

1

⎡

⎣
⎢

⎤

⎦
⎥ =

1× 0 + 0 × 1
0 × 0 + (− 1)×1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

0

−1
⎡

⎣
⎢

⎤

⎦
⎥ = − 0

1

⎡

⎣
⎢

⎤

⎦
⎥ = − 1 .

Again, it works!

We notice that the first column of Z is Z 0  = 0 , and the second column 

of Z is Z 1  = − 1 . This is a general rule: The columns of any single- qubit gate 

U are U 0  and U 1 . We can use this fact to figure out how to write the X gate 

as a (two- by- two square) matrix. The first column of X is

X 0 = 1 =
0

1

⎡

⎣
⎢

⎤

⎦
⎥.

And the second column of X is

X 1 = 0 =
1

0

⎡

⎣
⎢

⎤

⎦
⎥.

Putting  these together, we find

X =
0 1

1 0

⎡

⎣
⎢

⎤

⎦
⎥.

As another example, let’s figure out the matrix repre sen ta tion of H. The 

first column of H is

H 0 =
1

2
0 + 1( ) =

1

2

1

1

⎡

⎣
⎢

⎤

⎦
⎥ ,

and the second column of H is

H 1 =
1

2
0 − 1( ) =

1

2

1

−1
⎡

⎣
⎢

⎤

⎦
⎥.
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Putting  these together, we get

H =
1

2

1 1

1 −1

⎡

⎣
⎢

⎤

⎦
⎥.

If  we’re given a gate as a matrix, we can reverse what we just did, to write 

the gate in terms of its actions on 0  and 1 . For example, the “Square Root 

of NOT” gate is

X =
1

2

1+ i 1− i
1− i 1+ i

⎡

⎣
⎢

⎤

⎦
⎥.

It’s called X   because if you multiply it by itself (using the rules of matrix 

multiplication, and i2 = −1), you get X. Try it!

The first column of X  is X 0 , so we can determine that

X 0 =
1

2

1+ i

1− i
⎡

⎣
⎢

⎤

⎦
⎥ =

1

2
1+ i( ) 0 + 1− i( ) 1⎡⎣ ⎤⎦.

Similarly,

X 1 =
1

2

1− i

1+ i

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
1

2
1− i( ) 0 + 1+ i( ) 1⎡⎣ ⎤⎦.

As a final example, let’s write the identity gate I as a matrix. Since the 

first column of I is

I 0 = 0 =
1

0

⎡

⎣
⎢

⎤

⎦
⎥ ,

and the second column of I is

I 1 = 1 =
0

1

⎡

⎣
⎢

⎤

⎦
⎥ ,

we find the identity matrix

I =
1 0

0 1

⎡

⎣
⎢

⎤

⎦
⎥.

Simply by using matrix multiplication, we can prove Z2 = I, X2 = I, and H2 = I. 

Matrix multiplication is a bit less laborious than proving the same  thing with 

kets, as we did for H2 in Chapter 2.

A column vector represents a ket. How about a row vector, like [1 0]? 

This row vector is represented by the symbol 〈〈0||. Recall that ket is the second 

syllable in 〈〈brac||ket〉〉. Since 0  is a ket, 〈〈0|| logically is a brac, though almost 

every body calls it a bra. I call it a brac, which is extremely unusual but not 

completely unheard of. My last quantum mechanics course was taught by a 

professor who said brac. He  didn’t even give the disclaimer that almost no 

one  else on earth says that. But he was the chair of the physics department 

and could get away with it. He  could’ve called it a jock strap if he wanted to.
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Generally, if Ψ =
α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, then we define Ψ = α∗β∗[ ],  where the aster-

isk, as usual, represents the complex conjugate.  There’s a good reason to use 

complex conjugates, which we  will see soon.

Now that we have row vectors, we can multiply them with column vec-

tors. For example, if we multiply 〈〈ψ|| by some column vector like 0 =
1

0

⎡

⎣
⎢

⎤

⎦
⎥ , 

we have 〈〈ψ|| 0 , where the double bar is usually abbreviated to a single bar: 

〈〈ψ 0 . This is called an inner product. Since

Ψ 0 = [α∗β∗] 1

0

⎡

⎣
⎢

⎤

⎦
⎥ ,

we compute this product by first multiplying the left ele ment of the row 

vector by the top ele ment of the column vector: (α*)(1). Then we add the 

product of the right ele ment of the row vector and the bottom ele ment of the 

column vector: (β*)(0). So the inner product is a scalar: (α*)(1) + (β*)(0) = α*.

Notice that the inner product of a computational basis state with itself 

(with its brac equivalent, more precisely) is 1:

0 0 = 1  0[ ]
1

0

⎡

⎣
⎢

⎤

⎦
⎥ = 1× 1+ 0 × 0 = 1,

and

11 = 0  1[ ]
0

1

⎡

⎣
⎢

⎤

⎦
⎥ = 0 × 0 + 1× 1= 1.

But, the inner product of one basis state with another is 0:

0 1 = 1  0[ ]
0

1

⎡

⎣
⎢

⎤

⎦
⎥ = 1× 0 + 0 × 1= 0.

The computational basis states are called normalized  because the inner 

product of each state with itself is 1. They are called orthogonal (a general-

ization of perpendicular)  because the inner product of one state with the 

other is 0.  Because they are both normalized and orthogonal, they are called 

orthonormal.

Notice that if Ψ =
α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 is normalized, then

1= Ψ Ψ = α∗β∗[ ]
α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= α∗ α +β∗β = α 2

+ β 2
,

which is the condition that the probabilities of both  measurement outcomes 

must sum to 1. Why are the probability amplitudes in the column vector made 

into complex conjugates in the row vector? So that normalization (the inner 

product is 1) is the same as having probabilities sum to 1.
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We can form something called an outer product if we reverse the order 

of the brac and ket: 0 〈〈ψ||, for example. In this case, the product is a two- by- 

two matrix. The top ele ment of the column vector multiplies the left ele ment 

of the row vector to form the upper left ele ment of the matrix. And so on for 

the other three ele ments of the matrix:

0 Ψ =
1

0

⎡

⎣
⎢

⎤

⎦
⎥ α∗ β∗[ ] =

1× α∗ 1× β∗

0× α∗ 0× β∗
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

α∗ β∗

0 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Any gate can be written as a sum of outer products. For example, since

0 1 =
1

0

⎡

⎣
⎢

⎤

⎦
⎥ 0  1[ ] =

1×0 1×1
0×0 0×1

⎡

⎣
⎢

⎤

⎦
⎥ =

0 1

0 0

⎡

⎣
⎢

⎤

⎦
⎥

and

1 0 =
0

1

⎡

⎣
⎢

⎤

⎦
⎥ 1  0[ ] =

0 × 1 0 × 0

1× 1 1× 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

0 0

1 0

⎡

⎣
⎢

⎤

⎦
⎥ ,

X = 0 〈〈1|| + 1 〈〈0||.

Now we can see how outer and inner products combine in a remarkably 

 convenient way, which is  really why physicists use brac- ket notation. We know 

that X 0  = 1 . Let’s see how to recover this, using outer and inner products:

X 0 = 0 1 + 1 0( ) 0 = 0 1 0 + 1 0 0 .

Abbreviating the double bars to single bars, we recognize the inner products 

〈〈1 0  and 〈〈0 0 :

X 0  = 0 〈〈1 0  + 1 〈〈0 0  = 0 0 + 1 1 = 1 .

It works!

How do we represent a two- qubit state as a column vector? 

0 ⊗ 1 =
1

0

⎡

⎣
⎢

⎤

⎦
⎥ ⊗

0

1

⎡

⎣
⎢

⎤

⎦
⎥ , where ⊗ indicates a Kronecker product. To com-

pute a Kronecker product, each ele ment of the first matrix (or vector) multi-

plies the entire second matrix (or vector). So:

01 = 0 ⊗ 1 =
1

0

⎡

⎣
⎢

⎤

⎦
⎥ ⊗

0

1

⎡

⎣
⎢

⎤

⎦
⎥ =

1
0

1

⎡

⎣
⎢

⎤

⎦
⎥

0
0

1

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

0

1

0

0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

Similar calculations show

00 = 0 ⊗ 0 =

1

0

0

0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,
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10 = 1 ⊗ 0 =

0

0

1

0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,

and

11 = 1 ⊗ 1 =

0

0

0

1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

We can compute the Kronecker product of two matrices like 

H =
1

2

1 1

1 −1
⎡

⎣
⎢

⎤

⎦
⎥.

H⊗H =
1

2

1 1

1 −1
⎡

⎣
⎢

⎤

⎦
⎥ ⊗

1

2

1 1

1 −1
⎡

⎣
⎢

⎤

⎦
⎥

=
1

2

1
1 1

1 −1
⎡

⎣
⎢

⎤

⎦
⎥ 1

1 1

1 −1
⎡

⎣
⎢

⎤

⎦
⎥

1
1 1

1 −1
⎡

⎣
⎢

⎤

⎦
⎥ −1 1 1

1 −1
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=
1

2

1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Now we are able to analyze the following cir cuit three ways:

H

H|0〉

|1〉

Method 1: the familiar method

The initial state is 0 ⊗ 1 . We can compute the final state if we apply H to 

each qubit: H 0 ⊗H 1 =
1

2
0 + 1( )

1

2
0 − 1( ) = 1

2 0 + 1( ) 0 − 1( ) 

= 1
2 00 − 01 + 10 − 11( ). For comparison with the other two methods, 

let’s write this result as a column vector:

1

2

1

−1
1

−1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.
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Method 2: a separate matrix for each qubit

Alternatively, we can use matrices to compute the final state of each qubit. 

H 0 ⊗ H 1 =
1

2

1 1

1 −1

⎡

⎣
⎢

⎤

⎦
⎥ 

1

0

⎡

⎣
⎢

⎤

⎦
⎥ ⊗

1

2

1 1

1 −1

⎡

⎣
⎢

⎤

⎦
⎥ 

0

1

⎡

⎣
⎢

⎤

⎦
⎥ =

1

2

1

1

⎡

⎣
⎢

⎤

⎦
⎥ ⊗

1

−1

⎡

⎣
⎢

⎤

⎦
⎥ , by 

matrix multiplication on each side of the ⊗. Now we can take the Kronecker 

product of the two column vectors:

1

2

1

1

⎡

⎣
⎢

⎤

⎦
⎥ ⊗

1

−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
1

2

1
1

−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
1

−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=
1

2

1

−1
1

−1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

,

which agrees with Method 1.

Method 3: a single matrix for the transformation of both qubits

The initial state is 0 ⊗ 1 . We can use the ⊗ symbol with gates too, 

so  the final state is (H⊗H)( 0 ⊗ 1 ).  We’ve already computed  these two  

Kronecker products. So (H⊗H)( 0 ⊗ 1 ) = 
1

2

1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0

1

0

0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

How do we do this matrix multiplication? The result  will be a column vector 

with four ele ments. To find the top ele ment of the result, we use the top row 

of the four- by- four matrix, and the entire column vector that it multiplies. To 

find the second ele ment of the result, we used the second row of the four- by- 

four matrix and the entire column vector. The pattern continues:

1

2

1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0

1

0

0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
1

2

1×0+1×1+1×0+1×0
1×0−1×1+1×0−1×0
1×0+1×1−1×0−1×0
1×0−1×1−1×0+1×0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
1

2

1

−1
1

−1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Our next miscellaneous matrix topic is called unitarity. If a qubit is in 

state ||ψ〉〉 = α 0  + β 1 , we know that ||α||2 + ||β||2 must equal 1. If a quantum gate 

acts on ||ψ〉〉, the qubit may change to γ 0  + δ 1 , but the probabilities must still 

sum to 1: ||γ||2 + ||δ||2 = 1. All quantum gates must obey this rule, a kind of con-

servation of probability. Matrices that do this are called unitary.

It can be shown that  every unitary matrix has another special property: its 

inverse equals its conjugate transpose. Recall that the inverse of a matrix U is 
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written U− 1, and the product of a matrix and its inverse is the identity matrix: 

UU−1 = I. The conjugate transpose of U is written U† and is defined like this:

a b

c d

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

†

=
a∗ c∗
b∗ d∗

⎡

⎣
⎢

⎤

⎦
⎥.

To find the conjugate transpose of a matrix, you take the complex conjugate 

of  every ele ment, and then form the transpose: swap the upper right ele ment 

with the lower left ele ment. If the matrix is larger, the transpose is found by 

turning the top row into the left column, the second- from- top row into the 

second- from- left column,  etc. This is a reflection about a diagonal line from 

upper left to lower right.

We can confirm that H, for example, is unitary. We recall that H is its 

own inverse, so

H−1 = H =
1

2

1 1

1 −1
⎡

⎣
⎢

⎤

⎦
⎥.

We see also that H† = H  because taking the complex conjugate of the (real) 

ele ments  doesn’t change anything, and swapping upper right with lower left 

 doesn’t change anything. Since H† = H−1, H is unitary.

If you stop reading this chapter out of boredom, you  will dis appear with-

out a trace. Yes, that’s right. The final topic in this chapter is the trace of a 

square matrix. This is simply the sum of the diagonal ele ments, where diago-

nal is defined as the line from the upper left to the lower right. So, for exam-

ple, the trace of 1 0

0 1

⎡

⎣
⎢

⎤

⎦
⎥  is Tr

1 0

0 1

⎡

⎣
⎢

⎤

⎦
⎥ = 2,  but Tr

0 1

1 0

⎡

⎣
⎢

⎤

⎦
⎥ = 0.  Incidentally, 

1 0

0 1

⎡

⎣
⎢

⎤

⎦
⎥  is called a diagonal matrix, and 0 1

1 0

⎡

⎣
⎢

⎤

⎦
⎥  is called an anti- diagonal 

matrix.

To find the trace of something like 
1

2

1 1

1 1

⎡

⎣
⎢

⎤

⎦
⎥ ,  with a scalar  factor out 

front, you can  either pull the scalar outside of the trace and multiply by the 

scalar at the end:

Tr
1

2

1 1

1 1

⎡

⎣
⎢

⎤

⎦
⎥ =

1

2
Tr

1 1

1 1

⎡

⎣
⎢

⎤

⎦
⎥ =

1

2
2,

or you can put the scalar inside the matrix and then take the trace:

Tr
1

2

1 1

1 1

⎡

⎣
⎢

⎤

⎦
⎥ = Tr

1

2

1

2

1

2

1

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
2

2
.
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Chapter 14

Quantum Decoherence and the 
Infinitely More Than Nine Lives 
of Schrödinger’s Cat

A
t an incredible discount,  you’ve purchased a mixed bag of a hundred 

qubits: 50 are 0 , and 50 are 1 . You  don’t know which are which; 

that’s why they  were on sale. When you randomly select a qubit and 

 measure it in the computational basis, you have a 50% chance of getting 0  

and a 50% chance of getting 1 .

Your bag of qubits superficially resembles a (more expensive) pure bag 

of 100 qubits that are all in the state 
1

2
0 + 1( ). In both cases, a  measurement 

of one qubit is just as likely to yield 0  as 1 . However, we can do an experi-

ment to distinguish between the mixed bag and the pure bag. If we pull a 

qubit from the pure bag and apply the H gate, the state transforms from 

1

2
0 + 1( ) to 0 , and then a  measurement is certain to yield 0 . On the 

other hand, if we pull a qubit from the mixed bag and apply the H gate, we 

get  either 
1

2
0 + 1( ) or 

1

2
0 − 1( ), and a  measurement in  either case is 

50% likely to yield 1 . We may have to pull several qubits, apply H to each, 

and  measure them, before  we’re confident that we have the pure bag or the 

mixed bag: If we get 0   every time, we have the pure bag. If we get 0  about 

half the time, we have the mixed bag.

A qubit from the pure bag is said to be in a pure state. A qubit from the 

mixed bag is said to be in a mixed state. All the qubits in the first thirteen 

chapters have been in pure states. Only a pure state can be represented as a 

ket or the corresponding column vector. To represent a mixed state, we need 

something just a  little more complicated: the density matrix.
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If a qubit in a mixed state has probability p0 of being 0  and a probabil-

ity p1 of being 1 , the density matrix, ρ, is defined as

ρ = p0 0 0 + p1 1 1 = p0
1

0

⎡

⎣
⎢

⎤

⎦
⎥ 1  0[ ] + p1

0

1

⎡

⎣
⎢

⎤

⎦
⎥ 0  1[ ]

= p0

1 0

0 0

⎡

⎣
⎢

⎤

⎦
⎥ + p1

0 0

0 1

⎡

⎣
⎢

⎤

⎦
⎥ =

p0 0

0 p1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

In our example, p0 = p1 = ½, so

ρ = 1

2

1 0

0 1

⎡

⎣
⎢

⎤

⎦
⎥.

The density matrix of this mixed state is diagonal.

A density matrix is versatile enough to represent a pure state too. The 

density matrix of a pure state ||ψ〉〉 is

ρ = ||ψ〉〈〉〈ψ||.

In our example, Ψ =
1

2
0 + 1( ) =

1

2

1

1

⎡

⎣
⎢

⎤

⎦
⎥ , so

ρ = 1

2

1

1

⎡

⎣
⎢

⎤

⎦
⎥
1

2
1  1[ ] =

1

2

1 1

1 1

⎡

⎣
⎢

⎤

⎦
⎥.

We see that the density matrix of the pure state is not diagonal.

The purity of a state is defined as Tr(ρ2). The purity of a pure state is 1, 

and the purity of a mixed state is less than 1. The purity of the pure state is 

our example is

Tr
1

2

1 1

1 1

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟

2

=
1

4
Tr

1 1

1 1

⎡

⎣
⎢

⎤

⎦
⎥

1 1

1 1

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟ =

1

4
Tr

2 2

2 2

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟ = 1

as promised. The purity of the mixed state in our example is

Tr
1

2

1 0

0 1

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟

2

=
1

4
Tr

1 0

0 1

⎡

⎣
⎢

⎤

⎦
⎥

1 0

0 1

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟ =

1

4
Tr

1 0

0 1

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟ =

1

2
.

This mixed state has a purity of ½, which is the smallest pos si ble purity 

for a single qubit. A state with the smallest pos si ble purity is said to be a com-

pletely mixed state, and the probability of  measuring a result in any basis is 

½. We already saw that when  measuring the mixed state in the computational 

basis, the probability of  either 0  or 1  is ½. If we  measure instead in the x 

basis, the probability of  either +  or −  is still ½, regardless of  whether the 
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qubit was 0  or 1  when initially pulled out of the mixed bag. (This implies 

that pulling a qubit from the mixed bag is effectively a  measurement in the 

computational basis. I think it’s okay to think of it this way, though  really, 

before an  actual  measurement, the proper way to describe the mixed- state 

qubit is with its density matrix.)

Next, let’s look at the density matrix for an entangled two- qubit state: 

Ψ =
1

2
0 0 + 1 1( ). I  will add L and R subscripts to emphasize the Left 

and Right qubits: Ψ =
1

2
0L 0R + 1L 1R( ). The density matrix is

ρ = Ψ Ψ =
1

2
0L 0R + 1L 1R( ) 0L 0R + 1L 1R( ).

If you like, you can write this as a four- by- four matrix and confirm that 

Tr(ρ2) = 1; this is a pure state that we studied in  earlier chapters.

But what if we  measure only one of the two qubits and ignore the other? 

What if we  don’t even have access to the second qubit? Maybe we misplaced 

it, but we know it’s entangled with the qubit  we’ve retained. Is  there a way to 

represent the density matrix of the one remaining qubit?

Yes! We can define a reduced density matrix for one of the two entangled 

qubits. The reduced density matrix for the qubit on the left is defined as

ρL = 〈〈0R||ρ||0R〉〉 + 〈〈1R||ρ||1R〉〉.

A brac with an R subscript forms an inner product with a ket with an R sub-

script. The bracs and kets with R subscripts do not interact with bracs and 

kets with L subscripts; the symbols with dif fer ent subscripts pass through each 

other like ghosts (or like scalars).

So the reduced density matrix for the qubit on the left is

ρL =
1

2
0R 0L 0R + 1L 1R( ) 0L 0R + 1L 1R( ) 0R

+
1

2
1R 0L 0R + 1L 1R( ) 0L 0R + 1L 1R( ) 1R .

In the top line, the 〈〈0R|| on the left gets distributed to form inner products with 

both ||0R〉〉 and ||1R〉〉. The ||0R〉〉 on the far right of the top line forms inner products 

with both 〈〈0R|| and 〈〈1R||. Something very similar happens on the bottom line. So

ρL =
1

2
0L 0R 0R + 1L 0R 1R( ) 0L 0R 0R + 1L 1R 0R( )

+
1

2
0L 1R 0R + 1L 1R 1R( ) 0L 0R 1R + 1L 1R 1R( ).

Using 〈〈0R||0R〉〉 = 〈〈1R||1R〉〉 = 1 and 〈〈0R||1R〉〉 = 〈〈1R||0R〉〉 = 0, the usual single- qubit 

orthonormality,
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ρL =
1

2
0L 0L + 1L 1L( ) =

1

2

1

0

⎡

⎣
⎢

⎤

⎦
⎥ 1  0[ ] +

0

1

⎡

⎣
⎢

⎤

⎦
⎥ 0  1[ ]

⎛

⎝
⎜

⎞

⎠
⎟ =

1

2

1 0

0 1

⎡

⎣
⎢

⎤

⎦
⎥.

We see that this is exactly the completely mixed state of a single qubit. 

The state of both qubits, combined, must be pure: Ψ =
1

2
0L 0R + 1L 1R( )  

is a pure state, as is any state that can be written in terms of kets. But one of 

 these two qubits,  measured alone, behaves as a completely mixed state: 

When  measured in any basis, the probability of  either result is ½.

For example, if only the left qubit of 
1

2
0L 0R + 1L 1R( )  is  measured 

in the computational basis, it’s clear that  there’s a 50% chance of obtaining 

 either ||0L〉〉 or ||1L〉〉. What if we  measure in the x basis? We showed in Chap-

ter  5 that 
1

2
0 0 + 1 1( ) =

1

2
+ + + − −( ).  We can add L and R  

subscripts if we like: 
1

2
0L 0R + 1L 1R( ) =

1

2
+L +R + −L −R( ).  So 

 there’s a 50% chance of  either ||+L〉〉 or ||−L〉〉 when the qubit on the left is 

 measured in the x basis. No  matter what basis we choose,  there’s a 50% 

chance of  either result when  measuring just one qubit in this entangled pair.

Now we can introduce quantum decoherence, the gale that topples our 

fragile quantum states. We can carefully prepare a qubit the pure state 

1

2
0 + 1( ) for use in a quantum algorithm. But the qubit soon interacts 

uncontrollably with its surrounding environment: air molecules and photons, 

for example. The qubit becomes entangled with its environment. For simplic-

ity, let’s pretend  there are two pos si ble states of the qubit’s environment, ||0E〉〉 
and ||1E〉〉. Through the interaction of the qubit and its environment, if the 

qubit is  measured in state 0 , the environment is in state ||0E〉〉; if the qubit is 

found in state 1 , the environment is in state ||1E〉〉. So the entangled state of 

the qubit and its environment is 
1

2
0 0E + 1 1E( ).

This is exactly like the entangled two- qubit state we just looked at. The 

reduced density matrix of the original qubit is thus ρ = 1

2
0 0 + 1 1( ), and 

the original qubit is effectively in a completely mixed state. It no longer has 

the desired pure state + . It is no longer in a well- defined superposition at all. 

Instead, a  measurement in any basis gives a random result. A qubit in a com-

pletely mixed state is worthless for quantum  measurements,  unless our goal is 

random number generation. (If the qubit  were entangled with another qubit, 

we could apply gates to disentangle them and achieve a pure state before 

 measurement. However, a qubit entangled with the environment is mired in a 

mixed state  because we  can’t reliably manipulate the environment.)
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So every thing  we’ve studied in the  whole entire book is undermined by 

quantum decoherence, which researchers are assiduously working to mitigate. 

On the other hand, quantum decoherence sheds some light on Schrödinger’s 

cat, the most famous thought- experiment in the history of physics. If you 

search the internet, you can find nerds debating  whether quantum decoher-

ence solves the mystery of Schrödinger’s cat. It’s adorable.

The tale has oft been told. An innocent cat (what other kind is  there?) is 

locked in a box with some radioactive material. But that’s actually not the 

harmful part. The radioactive material is only 50% likely to undergo a single 

nuclear decay that  will be detected by a Geiger  counter. If radioactive decay is 

detected, the Geiger  counter electronically triggers the release of poison gas. 

That’s the harmful part.

Radioactive decay is a quantum  process, so the state of the radioactive 

material can be written as a quantum superposition: 
1

2
decay + no decay( ). 

This seems to imply that the cat is also in a quantum superposition, 

1

2
dead + alive( ). Schrödinger is pointing out the absurdity of a cat that is 

in a superposition of life and death. Something must be wrong with our 

mathematical expression.

What’s wrong, perhaps, is that we  didn’t account for entanglement with 

the environment. Applying our simplified model, the combined state of the cat 

and its environment is 
1

2
dead 0E + alive 1E( ). The cat is thus in a com-

pletely mixed state, ρ = 1

2
dead dead + alive alive( ), not a superposition at 

all.  There’s never any possibility of the dead cat interacting with the live ver-

sion of itself.

And yet. The combined state of the cat and its environment remains a 

pure state, a superposition. So some  people say that quantum decoherence 

must be combined with the many worlds interpretation. The combined state 

of the cat and its environment forever remains a pure state, though the ||dead〉〉 
and ||alive〉〉 terms in the superposition  can’t interact with each other. Instead, 

they specify two noninteracting branches of the multiverse. In this view, the 

total quantum state of the  whole entire multiverse remains always a pure 

state, a superposition of every thing that is physically pos si ble, separated into 

noninteracting branches.

But how is a branching multiverse consistent with probabilities of spe-

cific  measurements? And what determines which branch we end up in? And if 

a single universal state vector is the ultimate real ity, am I the totality of  every 

pos si ble version of myself, rather than the relatively tiny version in this branch? 

Have we rediscovered the ancient wisdom that the small self is an illusion? In 

one branch of the multiverse, you wrote this book, and  you’re wondering why 

you  couldn’t come up with a more satisfying finale.
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Appendix A

Further Reading

 There are lots of books about quantum computing and quantum information 

science.  Here are some of my favorites.

Thomas Wong, Introduction to Classical and Quantum Computing.

This is easily my favorite quantum computing textbook. Most other quantum 

computing textbooks contain sentences or  whole chapters that I  don’t  really 

understand. But if I concentrate, I can understand  every one of Wong’s state-

ments. He is clear, concise, and logical, and he tells you if he decides to skip 

steps in mathematical derivations.

Wong says the only prerequisite is precalculus, and he teaches you linear 

algebra. But if you want a more detailed introduction to matrix arithmetic, 

you might want to first study Quantum Computing for Every one.

And what’s more, Wong’s ebook is  free: https:// www . thomaswong . net 

/ introduction - to - classical - and - quantum - computing - 1e4p . pdf . Thank you, 

Thomas Wong. You are a quantum superhero. I’d send you a fruit basket, but 

I  don’t know if you like fruit. Or baskets.

Franklin de Lima Marquezino, Renato Portugal, and Carlile Lavor, 

A Primer on Quantum Computing.

This is my second favorite quantum computing textbook, and the only rea-

son I know about it is that I almost co- taught quantum computing with the 

lead author. Franklin is a friend and collaborator of my former department 

chair, and he was planning to visit Emory in spring 2020. The pandemic scut-

tled  those plans, and I ended up teaching the course alone.

A Primer on Quantum Computing is very short and  doesn’t cover a few 

fun topics like quantum teleportation, quantum key distribution, and Bell 

https://www.thomaswong.net/introduction-to-classical-and-quantum-computing-1e4p.pdf
https://www.thomaswong.net/introduction-to-classical-and-quantum-computing-1e4p.pdf
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inequalities. However, it includes a lot of details about specific examples of 

Grover’s algorithm and Shor’s algorithm. I relied heavi ly on  these detailed 

examples to learn and teach the material, and you  don’t find this level of de-

tail in many textbooks, including Wong’s.

Bernard Zygelman, A First Introduction to Quantum Computing and 

Information.

This is another obscure textbook that I like better than some of the more stan-

dard ones.  There are a few chapters about quantum device physics: how to 

engineer qubits and quantum gates. Few books include this topic, which re-

quires some serious background in quantum mechanics.

Chris Bernhardt, Quantum Computing for Every one.

Notice how authors are tripping over themselves to make their titles as unin-

timidating as pos si ble. Bernhardt’s book requires only precalculus as a prereq-

uisite, and he teaches matrix algebra in depth, but  doesn’t  really cover Shor’s 

algorithm at all. So his book is complementary to mine. In case you skipped my 

 whole book to get to “Further Reading”: I  don’t have any matrices  until the 

last two chapters, but I have three full chapters on Shor’s algorithm and its 

scaffolding (quantum Fourier transforms and quantum phase estimation).

Michael Nielsen and Isaac Chuang, Quantum Computing and Quantum 

Information.

The standard text. Best approached if you already have a degree in physics, 

math, computer science, or preferably all three.

The following books are about the meaning of quantum physics. The mean-

ing or philosophical interpretation of quantum physics is sometimes called 

“foundations of physics,” which, along with quantum computing, is a branch 

of quantum information science.

David Deutsch, The Fabric of Real ity: The Science of Parallel Universes— 

and Its Implications.

A pioneer of quantum computing discourses on his worldview, or rather, 

worlds view: He is a fearless champion of the many worlds interpretation of 

quantum physics. I find his arguments unpersuasive and his conclusions un-

supported, but beware, they may be correct regardless. Maybe he saves his 

rigorous arguments for his technical papers that contain math. The Fabric of 

Real ity is in ter est ing in the way that science fiction is in ter est ing, but I’m not 

sure what it has to do with real ity. Or with fabric.
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David Kaiser, How the Hippies Saved Physics: Science, Counterculture, 

and the Quantum Revival.

For  decades, most physicists disdained serious inquiry into the philosophy of 

quantum physics. At a time when no one  else cared about Bell inequalities, 

hippie physicists in Berkeley speculated about plausible and implausible 

consequences of quantum physics. Did they set the stage for recent advances 

in quantum information science? I love this book, though I’m neither a hip-

pie (too uptight) nor a physicist (my PhD is in electrical and computer 

engineering).

Adam Becker, What Is Real? The Unfinished Quest for the Meaning of 

Quantum Physics.

So rigorously logical, you could use the narrative throughline as a straight-

edge. Becker embraces Einstein’s position that  there is an objective real ity 

 independent of observation.

Philip Ball, Beyond Weird: Why Every thing You Thought You Knew about 

Quantum Physics Is Dif fer ent.

This is a  great book to read as a counterpoint to Becker’s book. Becker and 

Ball have opposite opinions about many topics:  Whether the many worlds in-

terpretation is a leading contender or an untestable absurdity,  whether it 

makes sense to speak of objective real ity  independent of observation, and 

 whether Niels Bohr’s legacy is institutionalized incoherence or piercing 

insight.

Tanya Bub and Jeffrey Bub, Totally Random: Why Nobody Understands 

Quantum Mechanics (A Serious Comic on Entanglement).

This is literally a comic book!  There are some inside jokes and thought- 

provoking insights if you already know a  little about philosophical interpre-

tations of quantum theory.

Jed Brody, Quantum Entanglement.

If, against all odds, against all logic and reason, against common sense and 

expert opinion, you enjoy my writing, then check out my  earlier book. I needed 

to bulk it up and wanted to add a chapter about quantum computing, but 

I  didn’t know anything about quantum computing at the time. So instead 

I added a chapter about special relativity, which has almost nothing to do with 

the rest of the book. Much like this section of further reading. And that, my 

friends, is how it’s done.
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 Table of Quantum Gates

 Table B.1 lists the single- qubit gates used in this book (please ignore the ma-

trix column if you  haven’t gotten to that chapter yet).

Any of  these gates can be controlled such that it acts on a target qubit 

only when the control qubit is 1 . For example, the controlled NOT,

applies a NOT to the target (the top qubit shown  above) when the control 

(indicated by the dot) is 1 . If the control is on the top and the target is on the 

bottom, the controlled NOT looks like this:

If  there are two controls, the gate acts only when both controls are 1 . 

For example, the Toffoli gate, the doubly controlled NOT,

,
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applies a NOT to the target when both controls are 1 .  Here, the target is the 

bottom qubit, but in general, any of the qubits may be the target.

The controlled- Z is sometimes represented by

We can imagine that  either qubit is the control, and  either is the target,  because 

this gate affects the qubits only when both are 1 .

 Table B.1

Gate Symbol Action on Basis States Matrix

I, identity gate I I 0  = 0

I 1  = 1

1 0

0 1

⎡

⎣
⎢

⎤

⎦
⎥

X, NOT gate ⊕ or X X 0  = 1

X 1  = 0

0 1

1 0

⎡

⎣
⎢

⎤

⎦
⎥

Y Y Y 0  = i 1

Y 1  = −i 0

0 −i
i 0

⎡

⎣
⎢

⎤

⎦
⎥

Z Z Z 0  = 0

Z 1  = − 1

1 0

0 −1
⎡

⎣
⎢

⎤

⎦
⎥

H, Hadamard 

gate
H

H 0〉 = 1

2
0 + 1( ) 1

2

1 1

1 −1
⎡

⎣
⎢

⎤

⎦
⎥

H1〉 = 1

2
0 − 1( )

P(θ), phase 

gate
P θ( )  or 

P

θ( )

P(θ) 0  = 0

P(θ) 1  = eiθ 1

1 0

0 eiθ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ry(θ), y- axis 

rotation

RY θ( )  or 

RY

θ( )

Ry(θ) 0  = cos(θ/2) 0   

+ sin(θ/2) 1

Ry(θ) 1  = −sin(θ/2) 0   

+ cos(θ/2)||1

cos
θ
2

− sin θ
2

sin
θ
2

cos
θ
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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A gate that always acts on two qubits is the SWAP gate,

,

which simply swaps the states of two qubits.
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Appendix C

Exercises

1.1. If our secret message is 11001 and our key is 10101, what is the 

cipher?

1.2. If the cipher is 11001 and the key is 10101, what is the secret message?

1.3. Write 
1

2
0 +

3

2
1  in terms of +  and − .

1.4. Write 
1

2
+ +

3

2
−  in terms of 0  and 1 .

1.5. The state of a qubit is 
1

2
0 +

3

2
1 . When it is  measured in the com-

putational basis, what are the probabilities of obtaining 0 and 1?

1.6. The state of a qubit is 
1

2
0 + x 1 . What is a pos si ble value of x?

2.1. Determine Z(α  0  + β  1 ).

2.2. Determine H(α  0  + β  1 ).

2.3. Write the cir cuit equivalent to ZH 1  and determine the state at the end 

of the cir cuit.

2.4. Write the cir cuit equivalent to ZHZX 1  and determine the state at the 

end of the cir cuit.

2.5. Write the cir cuit that transforms 0  into − .

2.6. Write the cir cuit that transforms +  into 1 .

3.1. Use FOIL multiplication to write 
1

2
0 + 1( )⎡

⎣⎢
⎤
⎦⎥

1

2
0 +

3

2
1

⎡
⎣⎢

⎤
⎦⎥
 in 

terms of the four two- qubit computational basis states. What is the 

probability of  measuring each pos si ble result?

3.2. Determine the final state of the qubits in this cir cuit:
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Z

3.3. Determine the final state of the qubits in this cir cuit:

Z

H

3.4. Determine the final state of the qubits in this cir cuit:

Z

H

H

4.1. Suppose the bottom qubit in Fig. 4.1 is  measured, but Odysseus never 

receives the  measurement result, so the Z gate is never applied. How 

does this affect quantum teleportation? What is the probability that 

Odysseus’s qubit attains the desired state, and what is his qubit’s state 

if the teleportation fails?

4.2. Suppose the  middle qubit in Fig. 4.1 is  measured, but Odysseus never 

receives the  measurement result, so the final NOT gate is never applied. 

How does this affect quantum teleportation? What is the probability 

that Odysseus’s qubit attains the desired state, and what is his qubit’s 

state if the teleportation fails?

4.3. If Penelope wants to send 11 through quantum dense coding, she re-

places the question mark in Fig. 4.2 with a NOT gate and a Z gate. Does 

the order of the two gates  matter? Why or why not?

6.1. Using Eqs. (6.3) through (6.5), show that Ry(−θ)||θ〉〉 = 0 .

6.2. In a CHSH experiment, what is <S> if the four  measurement  angles (α1, 

α2, β1, and β2) are all the same?

6.3. Write ||i〉〉 and ||−i〉〉 in terms of +  and − .

7.1. Convert 2310 to binary.

7.2. Convert 101012 to base ten.

7.3. Write out the quantum cir cuit to compute 2 + 3 = 5. Determine and 

explain the final state of each qubit.

8.1. Modify Fig. 8.11 for ||G〉〉 = 1  = ||01〉〉.
8.2. Modify Fig. 8.12 for ||G〉〉 = ||5〉〉 = ||101〉〉.
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8.3. Modify Fig. 8.18 to multiply by −1 the name associated with phone 

number 0 1 .

8.4. Figure 8.24 uses Grover’s algorithm to solve x + 1 = 3. Modify the cir-

cuit to solve x + 2 = 3.

8.5. Modify Fig. 8.24 to solve x + 1 = 2.

9.1. Go through Fig. 9.3 one gate a time and determine the state of the qu-

bits  after each gate. Assume the initial state is ||000〉〉.

9.2. Determine the QFT of the two- qubit state 
1

2
1 + 3( ).

9.3. Determine the QFT of the three- qubit state 
1

2
1 + 5( ).

9.4. Determine the QFT of the three- qubit state 
1

2
2 + 6( ).

10.1. We found the eigenstates and eigenvalues of X by solving X(α 0  + β 1 )  

= λ(α 0  + β 1 ). Solve the equivalent prob lem for Y.

10.2. Modify Fig. 10.5 to find the eigenvalues of X. You need to change two 

 things: You need to initialize the top qubit to an eigenstate of X, and 

you need to replace  every controlled- Z with a controlled- X. What re-

sults do you expect?

10.3. Modify Fig. 10.5 to find the eigenvalues of Y.

10.4. Determine 13mod4, 16mod5, and 21mod8.

10.5. Determine the order of 2mod7 and 4mod7.

10.6. Redesign Figs. 10.16 through 10.21, with only two qubits in the eigen-

value register. What results are expected in each case?

11.1. If N = 3599 and E = 7, determine the cipher if the secret message is 

A = 2025. Then decipher it using the  factors of 3599.

11.2. Use Euclid’s algorithm to find the greatest common divisor of 39 and 65.

12.1. Show how Fig. 12.1 corrects a bit- flip error in the second qubit from 

the top.

12.2. Show how Fig. 12.2 corrects a phase- flip error in the second qubit from 

the top.

13.1. Compute the products 
1 2

2 1

⎡

⎣
⎢

⎤

⎦
⎥

−2 2

2 −2
⎡

⎣
⎢

⎤

⎦
⎥ ,

3 0

0 2

⎡

⎣
⎢

⎤

⎦
⎥

0 −1
−3 0

⎡

⎣
⎢

⎤

⎦
⎥ , and 

0 1

0 1

⎡

⎣
⎢

⎤

⎦
⎥

−5 6

7 −5
⎡

⎣
⎢

⎤

⎦
⎥.

13.2. Compute the products 
2 2

3 3

⎡

⎣
⎢

⎤

⎦
⎥

1

−1
⎡

⎣
⎢

⎤

⎦
⎥ ,

1 1

1 0

⎡

⎣
⎢

⎤

⎦
⎥

2

1

⎡

⎣
⎢

⎤

⎦
⎥ , and 

3 3

3 4

⎡

⎣
⎢

⎤

⎦
⎥

−5
0

⎡

⎣
⎢

⎤

⎦
⎥.

13.3. Using matrix multiplication, determine HZ + , ZH 0 , and XHZ − .

13.4. Determine 〈〈0 + , 〈〈+ − , and 〈〈− 1 .

13.5. Determine the matrices 0 〈〈1||, + 〈〈+||, and − 〈〈0||.
13.6. Write H, Z, and I as sums of outer products, and show that the correct 

results are obtained when  these expressions act on the computational 

basis states.
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13.7. Determine the Kronecker products 0 ⊗ + , + ⊗ + , and + ⊗ 0 .

13.8. Determine the Kronecker products X⊗X, H⊗I, and X⊗H. Let each four- 

by- four matrix multiply the column vector 0 ⊗ 0 , and show that the 

same result is obtained when letting each gate act on a single qubit.
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AND operation, 69

Aspect, Alain, 45, 58

base two. See binary numbers

Bell inequalities, 45, 47, 58

binary numbers, 65–66

bit, 2, 9, 12

bit- flip error, 149–50

Bloch vector, 50–51

brac, 157–59

CHSH  inequality, 47, 49, 54

Clauser, John, 45, 47

CNOT gate, 22–23

column vector, 153, 155

completely mixed state, 164,  

166–67

complex conjugate, 7, 118

complex exponentials, 103–4

computational basis, 7, 21

conjugate transpose, 161–62

density matrix, 163–66

Deutsch, David, 11. See also Deutsch- 

Jozsa algorithm; Deutsch’s 

algorithm

Deutsch- Jozsa algorithm, 25–27

Deutsch’s algorithm, 11, 15–18

eigenstate, 117–19, 125

eigenvalue, 128. See also eigenstate

Einstein, Albert, 43, 45–47

entangled state. See quantum 

entanglement

Euclid’s algorithm, 140, 142–43

Euler’s formula, 103

exclusive OR operation, 2, 23, 69

Fermat’s  little theorem, 138, 139

FOIL multiplication, 21

full adder, 71–72

GHZ entanglement, 60–63

global phase  factor, 14

Grover’s algorithm, 79–81; for 

searching quantum database, 95–99; 

for solving algebraic prob lems, 

100–102

Hadamard gate, 13, 176

half adder, 69–71

IBM Quantum, 18, 23

identity gate, 11–12, 176

inner product, 158–59, 165

instantaneous communication, 39–40, 

43–44
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inverse: of gate, 13; of matrix, 161–62

inverse quantum Fourier transform 

(IQFT), 115–16

ket, 7, 157

Kronecker product, 159–61

linearity, 12, 40

local realism, 46–47

locality, 45. See also local realism

many worlds interpretation, 11, 57, 167

matrix, 153

matrix multiplication, 153–55

mixed state, 163. See also completely 

mixed state

modular arithmetic, 125. See also 

modular exponentiation; order of 

AmodN

modular exponentiation, 126–27

multiverse, 167. See also many worlds 

interpretation

no- cloning theorem, 39–40

normalization, 7, 158

NOT gate, 12, 176

order- finding cir cuit, 128

order of AmodN, 127

orthogonal vector, 158

orthonormal vectors, 158

outer product, 159

parallel universes. See multiverse

phase- flip error, 150–51

phase gate, 110, 176

phase kickback, 120

probability amplitudes, 7, 21

product state, 21

pure state, 163–64

quantum adder. See full adder; 

Grover’s algorithm, for solving 

algebraic prob lems; half adder

quantum correlation, 53

quantum database. See Grover’s 

algorithm, for searching quantum 

database

quantum decoherence, 149, 151, 167

quantum dense coding, 36

quantum entanglement, 22; and Bell 

inequalities, 45–48; and quantum 

dense coding, 36; and quantum 

teleportation, 33; and scheme for 

instantaneous communication, 

39–40, 42; of three qubits, 60

quantum error correction. See bit- flip 

error; phase- flip error

quantum Fourier transform (QFT), 

103, 105

quantum gate. See CNOT gate; 

Hadamard gate; identity gate; 

NOT gate; phase gate; SWAP gate; 

Toffoli gate

quantum key distribution, 3–6

quantum oracle, 16–17

quantum phase estimation, 118–21

quantum teleportation, 33–36

qubit, 7. See also probability 

amplitudes; quantum gate

realism. See local realism

reduced density matrix, 165–66

relative phase  factor, 14. See also 

phase gate

row vector, 157–58

RSA encryption, 2, 137–40

Schrodinger’s cat, 167

secret key encryption, 2–3. See also 

quantum key distribution

Shor’s algorithm, 140–43. See also 

order- finding cir cuit; quantum 

phase estimation; RSA encryption

special relativity, 42–43

superdeterminism, 57, 64

SWAP gate, 110, 177

Toffoli gate, 70

trace, 162
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unitarity, 161

x basis, 8. See also GHZ entanglement; 

quantum entanglement, and scheme 

for instantaneous communication; 

quantum key distribution

y basis, 60–61. See also GHZ 

entanglement

z basis. See computational  

basis

Zeilinger, Anton, 45, 60
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